Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Singular limit of solutions of $ u\sb t=\Delta u\sp m-A\cdot \nabla (u\sp q/q)$ as $ q\to\infty$


Author: Kin Ming Hui
Journal: Trans. Amer. Math. Soc. 347 (1995), 1687-1712
MSC: Primary 35K55; Secondary 35B40
DOI: https://doi.org/10.1090/S0002-9947-1995-1290718-6
MathSciNet review: 1290718
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We will show that the solutions of $ {u_t} = \Delta {u^m} - A\nabla ({u^q}/q)$ in $ {R^n} \times (0,T),T > 0,m > 1,u(x,0) = f(x) \in {L^1}({R^n}) \cap {L^\infty }({R^n})$ converge weakly in $ {({L^\infty }(G))^ * }$ for any compact subset $ G$ of $ {R^n} \times (0,T)$ as $ q \to \infty $ to the solution of the porous medium equation $ {\upsilon _t} = \Delta {\upsilon ^m}$ in $ {R^n} \times (0,T)$ with $ \upsilon (x,0) = g(x)$ where $ g \in {L^1}({R^n}),0 \leqslant g \leqslant 1$, satisfies $ g(x) + {(g(x))_{{x_1}}} = f(x)\quad {\text{in}}\quad \mathcal{D}'\left( {{R^n}} \right)$ for some function $ \tilde{g}(x) \in {L^1}({R^n}),\quad \tilde{g}(x) \geqslant 0$ such that $ g(x) = f(x),\quad \tilde{g}(x) = 0$ whenever $ g(x) < 1$ a.e. $ x \in {R^n}$. The convergence is uniform on compact subsets of $ {R^n} \times (0,T)\quad {\text{if}}\quad f \in {C_0}({R^n})$.


References [Enhancements On Off] (What's this?)

  • [A] J. R. Anderson, Local existence and uniqueness of solutions of degenerate parabolic equations, Comm. Partial Differential Equations 16 (1991), 105-143. MR 1096835 (92d:35163)
  • [Ar] D. G. Aronson, The porous medium equation, CIME lectures in Some Problems in Nonlinear Diffusion, Lecture Notes in Math., vol. 1224, Springer-Verlag, New York, 1986. MR 877986 (88a:35130)
  • [B] G. I. Barenblatt, On self-similar motions of compressible fluid in porous media, Prikl. Mat. Mech. 16 (1952), 679-698. (Russian) MR 0052948 (14:699h)
  • [BBH] P. Bénilan, L. Boccardo and M. Herrero, On the limit of solutions of $ {u_t} = \Delta {u^m}$ as $ m \to \infty $, Some Topics in Nonlinear PDE's, Proceedings Int. Conf. Torino 1989, M.Bertsch et al., ed.
  • [CF] L. A. Caffarelli and A. Friedman, Asymptotic behaviour of solutions of $ {u_t} = \Delta {u^m}$ as $ m \to \infty $, Indiana Univ. Math. J. 36 (1987), 711-728. MR 916741 (88m:35075)
  • [DFK] B. E. J. Dahlberg, E. B. Fabes and C. Kenig, A Fatou theorem for solutions of the porous medium equation, Proc. Amer. Math. Soc. 91 (1984), 205-212. MR 740172 (85e:35064)
  • [DK] B. E. J. Dahlberg and C. Kenig, Nonnegative solutions of generalized porous medium equations, Rev. Mat. Iberoamericana 2 (1986), 267-305. MR 908054 (88k:35223)
  • [DiK] J. I. Diaz and R. Kersner, On a nonlinear degenerate parabolic equation in infiltration or evaporation through a porous medium, J. Differential Equations 69 (1987), 368-403. MR 903393 (88i:35088)
  • [EZ] M. Escobedo and E. Zuazua, Large time behaviour for solutions of a convection diffusion equation in $ {R^n}$, J. Funct. Anal. 102 (1991), 119-161. MR 1124296 (92i:35063)
  • [ERV] J. R. Esteban, A. Rodriguez and J. L. Vazquez, A nonlinear heat equation with singular diffusivity, Comm. Partial Differential Equations 13 (1988), 985-1039. MR 944437 (89h:35167)
  • [G1] B. H. Gilding, Properties of solutions of an equation in the theory of infiltration, Arch. Rational Mech. Anal. 65 (1977), 203-225. MR 0447847 (56:6157)
  • [G2] -, A nonlinear degenerate parabolic problem, Ann. Scuola Norm. Sup. Pisa 4 (1977), 393-432. MR 0509720 (58:23077)
  • [HP] M. A. Herrero amd M. Pierre, The Cauchy problem for $ {u_t} = \Delta {u^m}$ when $ 0 < m < 1$, Trans. Amer. Math. Soc. 291(1) (1985), 145-158. MR 797051 (86i:35065)
  • [H1] K. M. Hui, Asymptotic behaviour of solutions of $ {u_t} = \Delta {u^m} - {u^p}$ as $ p \to \infty $, Nonlinear Anal., TMA 21 (1993), 191-195. MR 1233960 (94h:35103)
  • [H2] K. M. Hui, Singular limit of solutions of the generalized $ p$-Laplacian equation, Nonlinear Anal., TMA (to appear).
  • [Ke] R. Kersner, Degenerate parabolic equations with general nonlinearities, Nonlinear Anal., TMA 4 (1980), 1043-1062. MR 591298 (82h:35056)
  • [LSU] O. A. Ladyzenskaya, V. A. Solonnikov and N. N. Uraltceva, Linear and quasilinear equations of parabolic type, Transl. Math. Monos., Vol. 23, Amer. Math. Soc., Providence, RI, 1968.
  • [PV] A. De Pablo and J. L. Vazquez, Travelling waves and finite propagation in a reaction-diffusion equation, J. Differential Equations 93 (1991), 19-61. MR 1122305 (92h:35108)
  • [P] L. A. Peletier, The porous medium equation, Applications of Nonlinear Analysis in the Physical Sciences, (H. Amann, N. Bazley, and K. Kirchgassner, eds.), Pitman, Boston, 1981.
  • [S1] P. E. Sacks, Continuity of solutions of a singular parabolic equation, Nonlinear Anal., TMA 7 (1983), 387-409. MR 696738 (84d:35081)
  • [S2] P. E. Sacks, A singular limit problem for the porous medium equation, J. Math. Anal. Appl. (1989), 456-466. MR 1001869 (90f:35099)
  • [SX] R. E. Showalter and X. Xu, An approximate scalar conservation law from dynamics of gas absorption, J. Differential Equations 83 (1990), 145-165. MR 1031381 (90k:35170)
  • [S] E. M. Stein, Singular integral and differentiability properties of functions, Princeton Univ. Press, Princeton, NJ, 1971. MR 0290095 (44:7280)
  • [X] X. Xu, Asymptotics behaviour of solutions of hyperbolic conservation laws $ {u_t} + {({u^m})_x} = 0$ as $ m \to \infty $ with inconsistent values, Proc. Royal Soc. Edinburgh 113A (1989), 61-71. MR 1025454 (90k:35043)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 35K55, 35B40

Retrieve articles in all journals with MSC: 35K55, 35B40


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1995-1290718-6
Keywords: Asymptotic behaviour, porous medium equation with convection term, existence, uniqueness, nonnegative solutions
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society