Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Asymptotically autonomous semiflows: chain recurrence and Lyapunov functions


Authors: Konstantin Mischaikow, Hal Smith and Horst R. Thieme
Journal: Trans. Amer. Math. Soc. 347 (1995), 1669-1685
MSC: Primary 34C35; Secondary 34D05, 34K20, 54H20
DOI: https://doi.org/10.1090/S0002-9947-1995-1290727-7
MathSciNet review: 1290727
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: From the work of C. Conley, it is known that the omega limit set of a precompact orbit of an autonomous semiflow is a chain recurrent set. Here, we improve a result of L. Markus by showing that the omega limit set of a solution of an asymptotically autonomous semiflow is a chain recurrent set relative to the limiting autonomous semiflow. In the special case that there is a Lyapunov function for the limiting semiflow, sufficient conditions are given for an omega limit set of the asymptotically autonomous semiflow to be contained in a level set of the Lyapunov function.


References [Enhancements On Off] (What's this?)

  • [B] J. M. Ball, On the asymptotic behavior of generalized processes, with applications to nonlinear evolution equations, J. Differential Equations 27 (1978), 224-265. MR 0461576 (57:1561)
  • [C1] C. Conley, The gradient structure of a flow: I, IBM Research, RC 3939 (#17806), Yorktown Heights, NJ, July 17, 1972; Ergodic Theory Dynamical Systems 8 (1988), 11-26. MR 967626 (90e:58136)
  • [C2] -, Isolated invariant sets and the Morse index, CBMS Regional Conf. Ser. in Math., no. 38, Amer. Math. Soc., Providence, RI, 1978. MR 511133 (80c:58009)
  • [D] C. M. Dafermos, Semiflows associated with compact and uniform processes, Math. Systems Theory 8 (1975), 142-149. MR 0445473 (56:3813)
  • [FS] J. Frank and J. Selgrade, Abstract $ \omega $-limit sets, chain recurrent sets, and basic sets for flows, Proc. Amer. Math. Soc. 60 (1976), 309-316. MR 0423423 (54:11402)
  • [H1] J. K. Hale, Ordinary differential equations, Krieger, Malabar, FL, 1980. MR 587488 (82e:34001)
  • [H2] -, Asymptotic behavior of dissipative systems, Math. Surveys Monographs, vol. 25, Amer. Math. Soc., Providence, RI, 1988. MR 941371 (89g:58059)
  • [HV] J. K. Hale and S. M. Verduyn Lunel, Introduction to functional differential equations, Springer-Verlag, New York, 1993. MR 1243878 (94m:34169)
  • [L] J. P. LaSalle, Stability theory and invariance properties, Dynamical Systems, Vol. 1 (L. Cesari, J. Hale, and J. LaSalle, eds.), Academic Press, 1976, pp. 211-222. MR 0594977 (58:28875)
  • [Ma] L. Markus, Asymptotically autonomous differential systems, Contributions to the Theory of Nonlinear Oscillations 111 (S. Lefschetz, ed.), Ann. of Math. Stud., no. 36, Princeton Univ. Press, Princeton, NJ, 1956, pp. 17-29. MR 0081388 (18:394a)
  • [Mi] R. K. Miller, Almost periodic differential equations as dynamical systems with applications to the existence of a.p. solutions, J. Differential Equations 1 (1965), 337-345. MR 0185221 (32:2690)
  • [MS1] R. K. Miller and G. Sell, A note on Volterra integral equations and topological dynamics, Bull. Amer. Math. Soc. 74 (1968), 904-908. MR 0233160 (38:1483)
  • [MS2] -, Volterra integral equations and topological dynamics, Mem. Amer. Math. Soc., No. 102 (1970). MR 0288381 (44:5579)
  • [NS] V. V. Nemytskii and V. V. Stepanov, Qualitative theory of differential equations, Princeton Univ. Press, Princeton, NJ, 1960. MR 0121520 (22:12258)
  • [R] C. Robinson, Stability theorems and hyperbolicity in dynamical systems, Rocky Mountain J. Math. 7 (1977), 425-437. MR 0494300 (58:13200)
  • [Sa] S. H. Saperstone, Semidynamical systems in infinite dimensional spaces, Springer-Verlag, New York, 1981. MR 638477 (84m:58024)
  • [Se1] G. Sell, Nonautonomous differential equations and topological dynamics. I. The basic theory, Trans. Amer. Math. Soc. 127 (1967), 241-262. MR 0212313 (35:3187a)
  • [Se2] -, Nonautonomous differential equations and topological dynamics. II. Limiting equations, Trans. Amer. Math. Soc. 127 (1967), 263-283. MR 0212314 (35:3187b)
  • [T1] H. R. Thieme, Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations, J. Math. Biol. 30 (1992), 755-763. MR 1175102 (93e:34042)
  • [T2] -, Asymptotically autonomous differential equations in the plane, Rocky Mountain J. Math. 24 (1994), 351-380. MR 1270045 (96a:34095)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 34C35, 34D05, 34K20, 54H20

Retrieve articles in all journals with MSC: 34C35, 34D05, 34K20, 54H20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1995-1290727-7
Keywords: Chain recurrence, asymptotically autonomous semiflow, Lyapunov function
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society