Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Schur's partition theorem, companions, refinements and generalizations


Authors: Krishnaswami Alladi and Basil Gordon
Journal: Trans. Amer. Math. Soc. 347 (1995), 1591-1608
MSC: Primary 11P83; Secondary 05A17, 05A19, 11P81
DOI: https://doi.org/10.1090/S0002-9947-1995-1297520-X
MathSciNet review: 1297520
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Schur's partition theorem asserts the equality $ S(n) = {S_1}(n)$, where $ S(n)$ is the number of partitions of $ n$ into distinct parts $ \equiv 1,2(\mod 3)$ and $ {S_1}(n)$ is the number of partitions of $ n$ into parts with minimal difference $ 3$ and no consecutive multiples of $ 3$. Using a computer search Andrews found a companion result $ S(n) = {S_2}(n)$, where $ {S_2}(n)$ is the number of partitions of $ n$ whose parts $ {e_i}$ satisfy $ {e_i} - {e_{i + 1}} \geqslant 3,2or5$ according as $ {e_i} \equiv 1,2$ or $ (\bmod 3)$. By means of a new technique called the method of weighted words, a combinatorial as well as a generating function proof of both these theorems are given simultaneously. It is shown that $ {S_1}(n)$ and $ {S_2}(n)$ are only two of six companion partition functions $ {S_j}(n),j = 1,2, \ldots 6$, all equal to $ S(n)$. A three parameter refinement and generalization of these results is obtained.


References [Enhancements On Off] (What's this?)

  • [1] K. Alladi and B. Gordon, Generalizations of Schur's partition theorem, Manuscripta Math. 79 (1993), 113-126. MR 1216769 (94c:11099)
  • [2] K. Alladi, G. E. Andrews and B. Gordon, Generalizations and refinements of a partition theorem of Göllnitz, J.Reine Angew. Math. (to appear). MR 1316576 (96c:11119)
  • [3] -, Refinements and generalizations of Capparelli's conjecture on partitions, J. Algebra (to appear).
  • [4] G. E. Andrews, The theory of partitions, Encyclopedia of Math., vol. 2, Addison-Wesley, Reading, MA, 1976. MR 0557013 (58:27738)
  • [5] -, On Schur's second partition theorem, Glasgow Math. J. 9 (1967), 127-132.
  • [6] -, A new generalization of Schur's second partition theorem, Acta Arith. 4 (1968), 429-434.
  • [7] -, A general partition theorem with difference conditions, Amer. J. Math. 191 (1969), 18-24.
  • [8] -, The use of computers in search of identities of the Rogers-Ramanujan type, Computers in Number Theory (A. O. L. Atkin and B. J. Birch, eds.), Academic Press, New York, 1971, pp. 377-387. MR 0316373 (47:4920)
  • [9] -, Schur's theorem, Capparelli's conjecture and $ q$-trinomial coefficients, The Rademacher Legacy to Mathematics (Proc. Rademacher Centenary Conf, 1992), Contemp. Math., Amer. Math. Soc., Providence, RI, 1994, pp. 141-154.
  • [10] D. M. Bressoud, On a partition theorem of Göllnitz, J. Reine Angew. Math. 305 (1979), 215-217. MR 518863 (80a:10027)
  • [11] -, A combinatorial proof of Schur's 1926 partition theorem, Proc. Amer. Math. Soc. 79 (1980), 338-340. MR 565367 (81f:05017)
  • [12] S. Capparelli, On some representations of twisted affine Lie algebras and combinatorial identities, J. Algebra 154 (1993), 335-355. MR 1206124 (94d:17031)
  • [13] H. Göllnitz, Partitionen mit Differenzenbedingungen, J. Reine Angew. Math. 225 (1967), 154-190. MR 0211973 (35:2848)
  • [14] I. J. Schur, Zur additiven Zahlentheorie, Gessammelte Abhandlungen, vol. 2, Springer-Verlag, Berlin, 1973, pp. 43-50.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 11P83, 05A17, 05A19, 11P81

Retrieve articles in all journals with MSC: 11P83, 05A17, 05A19, 11P81


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1995-1297520-X
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society