On the decomposition of Langlands subrepresentations for a group in the Harish-Chandra class

Author:
Eugenio Garnica-Vigil

Journal:
Trans. Amer. Math. Soc. **347** (1995), 1609-1648

MSC:
Primary 22E46; Secondary 22E47

DOI:
https://doi.org/10.1090/S0002-9947-1995-1297526-0

MathSciNet review:
1297526

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: When a group is in the Harish-Chandra class, the goal of classifying its tempered representations and the goal of decomposing the Langlands subrepresentation for any of its standard representations are equivalent. The main result of this work is given in Theorem (5.3.5) that consists of a formula for decomposing any Langlands subrepresentation for the group . The classification of tempered representations is a consequence of this theorem (Corollary (5.3.6)).

**[A-B-V]**Jeffrey Adams, Dan Barbasch, and David A. Vogan Jr.,*The Langlands classification and irreducible characters for real reductive groups*, Progress in Mathematics, vol. 104, Birkhäuser Boston, Inc., Boston, MA, 1992. MR**1162533****[A]**James Arthur,*On elliptic tempered characters*, Acta Math.**171**(1993), no. 1, 73–138. MR**1237898**, https://doi.org/10.1007/BF02392767**[B-W]**Armand Borel and Nolan R. Wallach,*Continuous cohomology, discrete subgroups, and representations of reductive groups*, Annals of Mathematics Studies, vol. 94, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1980. MR**554917****[C-R]**Charles W. Curtis and Irving Reiner,*Representation theory of finite groups and associative algebras*, Pure and Applied Mathematics, Vol. XI, Interscience Publishers, a division of John Wiley & Sons, New York-London, 1962. MR**0144979****[Green]**D. A. Vogan,*Representations of real reductive Lie groups*, Progress in Math., Birkhäuser, Boston, MA, 1981.**[H]**SigurÄ‘ur Helgason,*Differential geometry and symmetric spaces*, Pure and Applied Mathematics, Vol. XII, Academic Press, New York-London, 1962. MR**0145455****[H-Ch 1]**Harish-Chandra,*Representations of a semisimple Lie group on a Banach space. I*, Trans. Amer. Math. Soc.**75**(1953), 185–243. MR**0056610**, https://doi.org/10.1090/S0002-9947-1953-0056610-2**[H-Ch 2]**-,*Representations of semi-simple Lie groups*III, Trans. Amer. Math. Soc.**76**(1954), 234-253.**[H-Ch 3]**-,*Supertempered distributions on a real reductive group*, Collected Papers, Vol. IV, Springer-Verlag.**[K]**Anthony W. Knapp,*Representation theory of semisimple groups*, Princeton Mathematical Series, vol. 36, Princeton University Press, Princeton, NJ, 1986. An overview based on examples. MR**855239****[K-Z]**A. W. Knapp and Gregg J. Zuckerman,*Classification of irreducible tempered representations of semisimple groups*, Ann. of Math. (2)**116**(1982), no. 2, 389–455. MR**672840**, https://doi.org/10.2307/2007066**[L]**J. Lepowsky,*Algebraic results on representations of semisimple Lie groups*, Trans. Amer. Math. Soc.**176**(1973), 1–44. MR**0346093**, https://doi.org/10.1090/S0002-9947-1973-0346093-X**[M]**I. Mirković,*Classification of irreducible tempered representations of semi-simple groups*, Ph.D. thesis, Univ. of Utah, 1986.**[S-V]**Birgit Speh and David A. Vogan Jr.,*Reducibility of generalized principal series representations*, Acta Math.**145**(1980), no. 3-4, 227–299. MR**590291**, https://doi.org/10.1007/BF02414191**[V-I]**D. A. Vogan,*The algebraic structure of the representations of semi-simple Lie groups*I, Ann. of Math.**109**(1976), 1-60.**[V-II]**David A. Vogan Jr.,*Irreducible characters of semisimple Lie groups. I*, Duke Math. J.**46**(1979), no. 1, 61–108. MR**523602****[W-1]**Nolan R. Wallach,*Representations of semi-simple Lie groups and Lie algebras*, Lie theories and their applications (Proc. Ann. Sem. Canad. Math. Congr., Queen’s Univ., Kingston, Ont., 1977) Academic Press, New York, 1978, pp. 154–246. MR**500458****[W-2]**Nolan R. Wallach,*Real reductive groups. I*, Pure and Applied Mathematics, vol. 132, Academic Press, Inc., Boston, MA, 1988. MR**929683****[W-3]**Nolan R. Wallach,*Real reductive groups. II*, Pure and Applied Mathematics, vol. 132, Academic Press, Inc., Boston, MA, 1992. MR**1170566**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
22E46,
22E47

Retrieve articles in all journals with MSC: 22E46, 22E47

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1995-1297526-0

Keywords:
Langlands subrepresentations,
irreducible tempered representations,
Harish-Chandra modules,
Vogan-Zuckerman cohomological induction

Article copyright:
© Copyright 1995
American Mathematical Society