SOME INEQUALITIES OF ALGEBRAIC POLYNOMIALS
WITH NONNEGATIVE COEFFICIENTS

WEIYU CHEN

ABSTRACT. Let \(S_n \) be the collection of all algebraic polynomials of degree \(\leq n \) with nonnegative coefficients. In this paper we discuss the extremal problem

\[
\sup_{p_n(x) \in S_n} \frac{\int_a^b (p'_n(x))^2 \omega(x) \, dx}{\int_a^b p_n^2(x) \omega(x) \, dx}
\]

where \(\omega(x) \) is a positive and integrable function. This problem is solved completely in the cases

(i) \([a, b] = [-1, 1], \, \omega(x) = (1 - x^2)^\alpha, \, \alpha > -1;\)
(ii) \([a, b] = [0, \infty), \, \omega(x) = x^\alpha e^{-x}, \, \alpha > -1;\)
(iii) \((a, b) = (-\infty, \infty), \, \omega(x) = e^{-ax^2}, \, \alpha > 0.\)

The second case was solved by Varma for some values of \(\alpha \) and by Milovanović completely. We provide a new proof here in this case.

1. INTRODUCTION

In this paper we investigate the following extremal problem

\[
\sup_{p_n(x) \in S_n} \frac{\int_a^b (p'_n(x))^2 \omega(x) \, dx}{\int_a^b p_n^2(x) \omega(x) \, dx}
\]

where

\[
S_n = \left\{ p_n(x): p_n(x) = \sum_{i=0}^n a_i x^i, \, a_i \geq 0, \, 0 \leq i \leq n \right\},
\]

and \(\omega(x): (a, b) \to \mathbb{R} \) is a positive and integrable function.

In the case \([a, b] = [0, \infty), \, \omega(x) = x^\alpha e^{-x}, \, \alpha > -1 \), the extremal problem (1) was initiated and solved by Varma [10] in the cases \(0 \leq \alpha \leq 1/2 \) and \((\sqrt{5} - 1)/2 \leq \alpha < \infty. \) Later, it was solved completely by Milovanović [4] for \(-1 \leq \alpha < \infty. \)

In this note we consider the above extremal problem (1) for different weight functions on different intervals. Throughout this paper, we denote \(S_n \) the collection of all algebraic polynomials of degree \(\leq n \) with nonnegative coefficients.

In Section 2, we provide the complete answer to the case \([a, b] = [-1, 1], \, \omega(x) = (1 - x^2)^\alpha, \, \alpha > -1. \) In the case \(\alpha = 0 \), this result is an analogue of a
Theorem of Lorentz [3] in the L_∞ norm. Indeed, that theorem holds for a wider class (Lorentz class) of polynomials, which was studied extensively by Scheick [7]. For some subsets of Lorentz class of polynomials, the extremal problem (1) was discussed by Milovanović and Petković [5] for the Jacobi weight.

In Section 3, we give a new proof of Milovanović's Theorem [4]. In our last section, Section 4, we consider the weight function $\omega(x) = e^{-\alpha x^2}$, $\alpha > 0$, on the interval $(-\infty, \infty)$.

The corresponding extremal problem for the unrestricted polynomials was discussed in Dörfler [1], [2], Mirsky [6] and Turán [8], which are Markov type inequalities in L_2 norm.

2. THE WEIGHT $\omega(x) = (1 - x^2)^\alpha$

In this section, we discuss the extremal problem in the L_2 norm under the weight function $\omega(x) = (1 - x^2)^\alpha$, $\alpha > -1$, on $[-1, 1]$. For some special values of α, we obtain several corollaries corresponding to some classic weight functions. The main result in this section is the following theorem.

Theorem 2.1. Let $p_n(x) \in S_n$, $\alpha > -1$; then

$$
(2) \quad \int_{-1}^{1} (p'_n(x))^2(1 - x^2)^\alpha \, dx \leq \frac{2n + 2\alpha + 1}{2n - 1} n^2 \int_{-1}^{1} p_n^2(x)(1 - x^2)^\alpha \, dx
$$

with equality when $p_n(x) = x^n$.

Proof. Since $p_n(x) \in S_n$, we can write

$$
p_n(x) = \sum_{i=0}^{n} a_i x^i
$$

with $a_i \geq 0$, $0 \leq i \leq n$. Then

$$
p'_n(x) = \sum_{i=1}^{n} ia_i x^{i-1}
$$

and

$$
\int_{-1}^{1} p_n^2(x)(1 - x^2)^\alpha \, dx = \sum_{i=0}^{n} \sum_{j=0}^{n} a_i a_j \int_{-1}^{1} x^{i+j}(1 - x^2)^\alpha \, dx,
$$

$$
\int_{-1}^{1} (p'_n(x))^2(1 - x^2)^\alpha \, dx = \sum_{i=0}^{n} \sum_{j=0}^{n} a_i a_j i j \int_{-1}^{1} x^{i+j-2}(1 - x^2)^\alpha \, dx.
$$

Let

$$
b_{ij} = \int_{-1}^{1} x^{i+j}(1 - x^2)^\alpha \, dx
$$

$$
= \frac{1 - (-1)^{i+j+1}}{2} B \left(\frac{i + j + 1}{2}, \alpha + 1 \right)
$$

where $B(x, y)$ is the Beta function and

$$
c_{ij} = i j \int_{-1}^{1} x^{i+j-2}(1 - x^2)^\alpha \, dx
$$

$$
= i j \frac{1 - (-1)^{i+j+1}}{2} B \left(\frac{i + j - 1}{2}, \alpha + 1 \right)
$$
for $1 \leq i, j \leq n$, $c_{ij} = 0$ if $i = 0$ or $j = 0$. Now denote

$$B = (b_{ij})_{0 \leq i, j \leq n}, \quad C = (c_{ij})_{0 \leq i, j \leq n},$$

and

$$a = (a_0, a_1, \ldots, a_n)^T;$$

then we can derive that

$$\int_{-1}^{1} p_n^2(x)(1 - x^2)\alpha dx = \sum_{i=0}^{n} \sum_{j=0}^{n} a_i a_j b_{ij} = a^T B a,$$

$$\int_{-1}^{1} (p_n'(x))^2(1 - x^2)\alpha dx = \sum_{i=0}^{n} \sum_{j=0}^{n} a_i a_j c_{ij} = a^T C a.$$

Now it suffices to consider the following extremal problem:

$$\sup_{a \in R^{n+1}_+} \frac{a^T C a}{a^T B a}$$

where $R^{n+1}_+ = \{a: a = (a_0, a_1, \ldots, a_n)^T, a_i \geq 0, 0 \leq i \leq n\}$. Or find the least λ such that

$$\frac{a^T C a}{a^T B a} \leq \lambda, \quad \text{for all } a \in R^{n+1}_+,$$

which is

$$\lambda (\lambda B - C) a \geq 0, \quad \text{for all } a \in R^{n+1}_+.$$

Observe that $b_{ij} \geq 0$, $c_{ij} \geq 0$, $0 \leq i, j \leq n$. If we can find a smallest λ such that all the elements of $\lambda B - C$ are nonnegative, then we obtain (4) automatically. Notice also that the matrices B and C have the same structure; thus it suffices to find λ such that

$$\lambda b_{ij} - c_{ij} \geq 0, \quad \text{when } b_{ij} \neq 0,$$

i.e.,

$$\lambda \geq \frac{c_{ij}}{b_{ij}} = \frac{ij(i + j + 2\alpha + 1)}{i + j - 1}, \quad 1 \leq i, j \leq n.$$

If we consider c_{ij}/b_{ij} as a function of two continuous variables i and j, then we have

$$\partial_i \left(\frac{ij(i + j + 2\alpha + 1)}{i + j - 1} \right) = \frac{j[i^2 + (j - 1)(2i + j + 2\alpha + 1)]}{(i + j - 1)^2} \geq 0$$

and similarly

$$\partial_j \left(\frac{ij(i + j + 2\alpha + 1)}{i + j - 1} \right) = \frac{i[j^2 + (i - 1)(2j + i + 2\alpha + 1)]}{(i + j - 1)^2} \geq 0;$$

thus this is an increasing function of i and j, and we can pick up

$$\lambda = \frac{ij(i + j + 2\alpha + 1)}{i + j - 1} \bigg|_{i=n, j=n} = \frac{2n + 2\alpha + 1}{2n - 1} n^2.$$

To see that λ is the best one, we can consider $p_n(x) = x^n$ or $a^T = (0, 0, \ldots, 0, 1)$. This completes the proof of the theorem. \hfill \square

For some special values of α, we have the following corollaries.
Corollary 2.2. Let $p_n(x) \in S_n$; then
\[\int_{-1}^{1} (p'_n(x))^2 \, dx \leq \frac{2n+1}{2n-1} n^2 \int_{-1}^{1} p_n^2(x) \, dx \]
with equality when $p_n(x) = x^n$.

Corollary 2.3. Let $p_n(x) \in S_n$; then
\[\int_{-1}^{1} (p'_n(x))^2 (1-x^2)^{-1/2} \, dx \leq \frac{2n}{2n-1} n^2 \int_{-1}^{1} p_n^2(x)(1-x^2)^{-1/2} \, dx \]
with equality when $p_n(x) = x^n$.

Corollary 2.4. Let $p_n(x) \in S_n$; then
\[\int_{-1}^{1} (p'_n(x))^2 (1-x^2)^{-1/2} \, dx \leq \frac{2n+2}{2n-1} n^2 \int_{-1}^{1} p_n^2(x)(1-x^2)^{-1/2} \, dx \]
with equality when $p_n(x) = x^n$.

In the case $\alpha = 1$, a similar result was proved by Varma [9] for polynomials having real roots.

3. The weight $\omega(x) = x^\alpha e^{-x}$

We give a new proof of Milovanović’s Theorem [4] in this section. Indeed we use the same argument as was used in the proof of Theorem 2.1. This time, we consider the weight function $\omega(x) = x^\alpha e^{-x}$, $\alpha > -1$, on the interval $[0, \infty)$.

Theorem 3.1. Let $p_n(x) \in S_n$, $\alpha > -1$; then
\[\int_{0}^{\infty} (p'_n(x))^2 x^\alpha e^{-x} \, dx \leq C_n(\alpha) \int_{0}^{\infty} p_n^2(x) x^\alpha e^{-x} \, dx \]
where
\[C_n(\alpha) = \begin{cases} 1/[(2 + \alpha)(1 + \alpha)], & -1 < \alpha \leq \alpha_n, \\ n^2/[(2n + \alpha)(2n + \alpha - 1)], & \alpha_n \leq \alpha < \infty, \end{cases} \]
and
\[\alpha_n = \frac{1}{2} (n + 1)^{-1} [(2n^2 + 2n + 1)^{1/2} - 3n + 1]. \]
Moreover, $C_n(\alpha)$ is the best possible constant.

Proof. Let $p_n(x) = \sum_{i=0}^{n} a_i x^i$, $a_i \geq 0$, $0 \leq i \leq n$, then
\[\int_{0}^{\infty} p_n^2(x) x^\alpha e^{-x} \, dx = \sum_{i=0}^{n} \sum_{j=0}^{n} a_i a_j \int_{0}^{\infty} x^{i+j+\alpha} e^{-x} \, dx = \sum_{i=0}^{n} \sum_{j=0}^{n} a_i a_j b_{ij} = a^T B a \]
where
\[b_{ij} = \int_{0}^{\infty} x^{i+j+\alpha} e^{-x} \, dx = \Gamma(i + j + \alpha + 1), \]
\[B = (b_{ij})_{0 \leq i, j \leq n}. \]
And similarly, we have
\[\int_0^\infty (p_n'(x))^2 x^\alpha e^{-x} dx = \sum_{i=0}^n \sum_{j=0}^n a_i a_j c_{ij} = a^T Ca \]
where
\[c_{ij} = \begin{cases} ij \Gamma(i + j + \alpha - 1), & 1 \leq i, j \leq n, \\ 0, & i = 0 \text{ or } j = 0, \end{cases} \]
\[C = (c_{ij})_{0 \leq i, j \leq n}. \]

Therefore, we need to find the least \(\lambda \) such that
\[\lambda b_{ij} - c_{ij} \geq 0, \quad \text{for } 1 \leq i, j \leq n. \]
That is, the maximum value of the function
\[f(i, j) := \frac{c_{ij}}{b_{ij}} = \frac{ij}{(i + j + \alpha)(i + j + \alpha - 1)}. \]
Let \(k = i + j \); then
\[f(i, j) = \frac{ij}{(i + j + \alpha)(i + j + \alpha - 1)} = \frac{i(k - i)}{(k + \alpha)(k + \alpha - 1)} =: g(i, k). \]

If we consider \(g \) as a function of two continuous variables \(i \) and \(k \), then we have
\[\frac{\partial g(i, k)}{\partial i} = \frac{k - 2i}{(k + \alpha)(k + \alpha - 1)}. \]
Therefore, \(g(i, k) \) takes on its maximum value at \(i = k/2 \) if we fix \(k \) (consider it as a function of \(i \) alone). Now it suffices to consider the maximum value of the function
\[h(k) := g \left(\frac{k}{2}, k \right) = \frac{k^2}{4(k + \alpha)(k + \alpha - 1)}. \]
Following the exactly same argument of Milovanović [4, p. 425], we can see that the best possible value of \(\lambda \) is \(C_n(\alpha) \). We omit the details. This completes the proof. \(\square \)

Remark. The same idea also seems to work for other \(L_p \) norms when \(p \) is an integer, but they become more and more complicated as \(p \) is bigger and bigger. We will not formulate them here. However, for the \(L_1 \) norm, the result is simple.

Theorem 3.2. Let \(p_n(x) \in S_n, \alpha > -1; \) then
\[\int_0^\infty p_n'(x) x^\alpha e^{-x} dx \leq \lambda_n(\alpha) \int_0^\infty p_n(x) x^\alpha e^{-x} dx \]
where
\[\lambda_n(\alpha) = \begin{cases} 1/(1 + \alpha), & -1 < \alpha \leq 0, \\ n/(n + \alpha), & 0 \leq \alpha < \infty. \end{cases} \]
Moreover, \(\lambda_n(\alpha) \) is the best possible constant.
4. **The weight** $\omega(x) = e^{-ax^2}$

In this section we discuss the weight function $\omega(x) = e^{-ax^2}$, $\alpha > 0$, on the whole real line. The corresponding result is the following theorem.

Theorem 4.1. Let $p_n(x) \in S_n$, $\alpha > 0$; then

\[
\int_{-\infty}^{\infty} (p_n'(x))^2 e^{-ax^2} \, dx \leq \frac{2\alpha}{2n-1} n^2 \int_{-\infty}^{\infty} p_n^2(x) e^{-ax^2} \, dx
\]

with equality when $p_n(x) = x^n$.

Proof. Let $p_n(x) = \sum_{i=0}^{n} a_i x^i \in S_n$; then

\[
\int_{-\infty}^{\infty} p_n^2(x) e^{-ax^2} \, dx = \sum_{i=0}^{n} \sum_{j=0}^{n} a_i a_j b_{ij} = a^T B a
\]

where

\[
b_{ij} = \int_{-\infty}^{\infty} x^{i+j} e^{-ax^2} \, dx = (1 - (-1)^{i+j+1})(i+j)! 2^{-(i+j)/2-1} \alpha^{-(i+j+1)/2} \sqrt{\pi} ,
\]

and

\[
b = (b_{ij})_{0 \leq i, j \leq n},
\]

and

\[
\int_{-\infty}^{\infty} (p_n'(x))^2 e^{-ax^2} \, dx = \sum_{i=0}^{n} \sum_{j=0}^{n} a_i a_j c_{ij} = a^T C a
\]

where

\[
c_{ij} = i j \int_{-\infty}^{\infty} x^{i+j-2} e^{-ax^2} \, dx = (1 - (-1)^{i+j+1}) i j (i+j-3)!! 2^{-(i+j)/2} \alpha^{-(i+j-1)/2} \sqrt{\pi} ,
\]

and

\[
c = (c_{ij})_{0 \leq i, j \leq n}.
\]

For $i + j$ even, let

\[
f(i, j) := \frac{c_{ij}}{b_{ij}} = 2\alpha \frac{i j}{i+j-1} , \quad 1 \leq i, j \leq n;
\]

then considering f as a function of two continuous variables i and j, we can obtain

\[
\frac{\partial f(i, j)}{\partial i} = \frac{2\alpha j (j-1)}{(i+j-1)^2} \geq 0 \quad \text{for } 1 \leq i, j \leq n,
\]

and

\[
\frac{\partial f(i, j)}{\partial j} = \frac{2\alpha i (i-1)}{(i+j-1)^2} \geq 0 , \quad \text{for } 1 \leq i, j \leq n.
\]

Therefore, $f(i, j)$ attains its maximum value at $i = n$, $j = n$, which implies the desired result. \square

Added in Proof. After this manuscript was written, the author learned that Professor A. K. Varma [11] had written a paper on the same subject. There are some overlaps between his results and our results in §§2 and 3, but we do use different methods.
REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ALBERTA, EDMONTON, ALBERTA, CANADA T6G 2G1