theory of differential forms on manifolds
Author:
Chad Scott
Journal:
Trans. Amer. Math. Soc. 347 (1995), 20752096
MSC:
Primary 58A14; Secondary 58G03
MathSciNet review:
1297538
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: In this paper, we establish a Hodgetype decomposition for the space of differential forms on closed (i.e., compact, oriented, smooth) Riemannian manifolds. Critical to the proof of this result is establishing an estimate which contains, as a special case, the result referred to by Morrey as Gaffney's inequality. This inequality helps us show the equivalence of the usual definition of Sobolev space with a more geometric formulation which we provide in the case of differential forms on manifolds. We also prove the boundedness of Green's operator which we use in developing the theory of the Hodge decomposition. For the calculus of variations, we rigorously verify that the spaces of exact and coexact forms are closed in the norm. For nonlinear analysis, we demonstrate the existence and uniqueness of a solution to the harmonic equation.
 [C]
Henri
Cartan, Differential forms, Translated from the French,
Houghton Mifflin Co., Boston, Mass, 1970. MR 0267477
(42 #2379)
 [Co]
J.B. Conway, A course in functional analysis (2nd ed.), Macmillan, New York, 1988.
 [Con]
P.
E. Conner, The Neumann’s problem for differential forms on
Riemannian manifolds, Mem. Amer. Math. Soc. 1956
(1956), no. 20, 56. MR 0078467
(17,1197e)
 [D]
G.
F. D. Duff, Differential forms in manifolds with boundary,
Ann. of Math. (2) 56 (1952), 115–127. MR 0048136
(13,986e)
 [Da]
Bernard
Dacorogna, Direct methods in the calculus of variations,
Applied Mathematical Sciences, vol. 78, SpringerVerlag, Berlin, 1989.
MR 990890
(90e:49001)
 [DS]
S.
K. Donaldson and D.
P. Sullivan, Quasiconformal 4manifolds, Acta Math.
163 (1989), no. 34, 181–252. MR 1032074
(91d:57012), http://dx.doi.org/10.1007/BF02392736
 [DSp]
G.
F. D. Duff and D.
C. Spencer, Harmonic tensors on Riemannian manifolds with
boundary, Ann. of Math. (2) 56 (1952), 128–156.
MR
0048137 (13,987a)
 [EG]
Lawrence
C. Evans and Ronald
F. Gariepy, Measure theory and fine properties of functions,
Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992. MR 1158660
(93f:28001)
 [F]
Harley
Flanders, Differential forms with applications to the physical
sciences, 2nd ed., Dover Books on Advanced Mathematics, Dover
Publications Inc., New York, 1989. MR 1034244
(90k:53001)
 [GT]
David
Gilbarg and Neil
S. Trudinger, Elliptic partial differential equations of second
order, 2nd ed., Grundlehren der Mathematischen Wissenschaften
[Fundamental Principles of Mathematical Sciences], vol. 224,
SpringerVerlag, Berlin, 1983. MR 737190
(86c:35035)
 [H]
Piotr Hajlasz, Note on MeyersSerrin's Theorem, Expositiones Math. (to appear).
 [I]
Tadeusz
Iwaniec, 𝑝harmonic tensors and quasiregular mappings,
Ann. of Math. (2) 136 (1992), no. 3, 589–624.
MR
1189867 (94d:30034), http://dx.doi.org/10.2307/2946602
 [IL]
Tadeusz
Iwaniec and Adam
Lutoborski, Integral estimates for null Lagrangians, Arch.
Rational Mech. Anal. 125 (1993), no. 1, 25–79.
MR
1241286 (95c:58054), http://dx.doi.org/10.1007/BF00411477
 [IM]
Tadeusz
Iwaniec and Gaven
Martin, Quasiregular mappings in even dimensions, Acta Math.
170 (1993), no. 1, 29–81. MR 1208562
(94m:30046), http://dx.doi.org/10.1007/BF02392454
 [K]
Kunihiko
Kodaira, Harmonic fields in Riemannian manifolds (generalized
potential theory), Ann. of Math. (2) 50 (1949),
587–665. MR 0031148
(11,108e)
 [LM]
H.
Blaine Lawson Jr. and MarieLouise
Michelsohn, Spin geometry, Princeton Mathematical Series,
vol. 38, Princeton University Press, Princeton, NJ, 1989. MR 1031992
(91g:53001)
 [M]
Charles
B. Morrey Jr., Multiple integrals in the calculus of
variations, Die Grundlehren der mathematischen Wissenschaften, Band
130, SpringerVerlag New York, Inc., New York, 1966. MR 0202511
(34 #2380)
 [Mo]
Marston
Morse, Global variational analysis, Princeton University
Press, Princeton, N.J., 1976. Weierstrass integrals on a Riemannian
manifold; Mathematical Notes, No. 16. MR 0494242
(58 #13150)
 [MM]
Sunil Mukhi and N. Mukunda, Introduction to topology, differential geometry and group theory for physicists, Wiley Eastern Limited, New Delhi, 1990.
 [N]
Raghavan
Narasimhan, Analysis on real and complex manifolds, Advanced
Studies in Pure Mathematics, Vol. 1, Masson & Cie, Éditeurs,
Paris, 1968. MR
0251745 (40 #4972)
 [RRT]
Joel
W. Robbin, Robert
C. Rogers, and Blake
Temple, On weak continuity and the Hodge
decomposition, Trans. Amer. Math. Soc.
303 (1987), no. 2,
609–618. MR
902788 (88m:58004), http://dx.doi.org/10.1090/S00029947198709027888
 [R]
H.
L. Royden, Real analysis, The Macmillan Co., New York, 1963.
MR
0151555 (27 #1540)
 [S]
Elias
M. Stein, Singular integrals and differentiability properties of
functions, Princeton Mathematical Series, No. 30, Princeton University
Press, Princeton, N.J., 1970. MR 0290095
(44 #7280)
 [Sc]
C.H. Scott, theory of differential forms on manifolds, Ph.D. Thesis, Mathematics Department, Syracuse University, June, 1993.
 [SS]
L.
M. Sibner and R.
J. Sibner, A nonlinear HodgedeRham theorem, Acta Math.
125 (1970), 57–73. MR 0281231
(43 #6950)
 [U]
K.
Uhlenbeck, Regularity for a class of nonlinear elliptic
systems, Acta Math. 138 (1977), no. 34,
219–240. MR 0474389
(57 #14031)
 [W]
Frank
W. Warner, Foundations of differentiable manifolds and Lie
groups, Graduate Texts in Mathematics, vol. 94, SpringerVerlag,
New York, 1983. Corrected reprint of the 1971 edition. MR 722297
(84k:58001)
 [Z]
Eberhard Zeidler, Nonlinear functional analysis and its applications, SpringerVerlag, New York, 1990.
 [C]
 H. Cartan, Differential forms, Houghton Mifflin, Boston, MA, 1970. MR 0267477 (42:2379)
 [Co]
 J.B. Conway, A course in functional analysis (2nd ed.), Macmillan, New York, 1988.
 [Con]
 P.E. Conner, The Neumann's problem for differential forms on Riemannian manifolds, Mem. Amer. Math. Soc. 20 (1956). MR 0078467 (17:1197e)
 [D]
 G.F.D. Duff, Differential forms on manifolds with boundary, Ann. of Math. 56 (1952), 115127. MR 0048136 (13:986e)
 [Da]
 B. Dacorongna, Direct methods in the calculus of variations, SpringerVerlag, New York, 1989. MR 990890 (90e:49001)
 [DS]
 S.K. Donaldson and D.P. Sullivan, Quasiconformal manifolds, Acta Math. 163 (1989), 181252. MR 1032074 (91d:57012)
 [DSp]
 G.F.D. Duff and D.C. Spencer, Harmonic tensors on Riemannian manifolds with boundary, Ann. of Math. 56 (1952), 128156. MR 0048137 (13:987a)
 [EG]
 Lawrence C. Evans and Ronald F. Gariepy, Measure theory and fine properties of functions, CRC Press, Boca Raton, FL, 1992. MR 1158660 (93f:28001)
 [F]
 Harley Flanders, Differential forms with applications to the physical sciences, Dover, New York, 1989. MR 1034244 (90k:53001)
 [GT]
 David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order (2nd ed.), SpringerVerlag, New York, 1983. MR 737190 (86c:35035)
 [H]
 Piotr Hajlasz, Note on MeyersSerrin's Theorem, Expositiones Math. (to appear).
 [I]
 T. Iwaniec, harmonic tensors and quasiregular mappings, Ann. of Math. 136 (1992), 589624. MR 1189867 (94d:30034)
 [IL]
 T. Iwaniec and A. Lutoborski, Integral estimates for null Lagrangians, Arch. Rational Mech. Anal. (to appear). MR 1241286 (95c:58054)
 [IM]
 T. Iwaniec and G. Martin, Quasiregular mappings in even dimensions, Acta Math.170 (1993), 2981. MR 1208562 (94m:30046)
 [K]
 K. Kodaira, Harmonic fields in Riemannian manifolds, Ann. of Math. 50 (1949), 587665. MR 0031148 (11:108e)
 [LM]
 H.B. Lawson and M.L. Michelsohn, Spin geometry, Princeton Univ. Press, Princeton, NJ, 1989. MR 1031992 (91g:53001)
 [M]
 C.B. Morrey, Multiple integrals in the calculus of variations, SpringerVerlag, Berlin, 1966. MR 0202511 (34:2380)
 [Mo]
 Marston Morse, Global variational analysis, Weierstrass integrals on a Riemannian manifold, Princeton Univ. Press, Princeton, NJ, 1976. MR 0494242 (58:13150)
 [MM]
 Sunil Mukhi and N. Mukunda, Introduction to topology, differential geometry and group theory for physicists, Wiley Eastern Limited, New Delhi, 1990.
 [N]
 R. Narasimhan, Analysis on real and complex manifolds, Elsevier Science B.V., Amsterdam, 1968. MR 0251745 (40:4972)
 [RRT]
 J.W. Robbin, R.C. Rogers and B. Temple, On weak continuity and the Hodge decomposition, Trans. Amer. Math. Soc. 303 (1987), 609618. MR 902788 (88m:58004)
 [R]
 H.L. Royden, Real analysis, (3rd ed.), Macmillan, New York, 1988. MR 0151555 (27:1540)
 [S]
 Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, NJ, 1970. MR 0290095 (44:7280)
 [Sc]
 C.H. Scott, theory of differential forms on manifolds, Ph.D. Thesis, Mathematics Department, Syracuse University, June, 1993.
 [SS]
 L.M. Sibner and R.B. Sibner, A nonlinear Hodge De Rham Theorem, Acta Math. 125 (1970), 5773. MR 0281231 (43:6950)
 [U]
 K. Uhlenbeck, Regularity for a class of nonlinear elliptic systems, Acta Math. 138 (1977), 219250. MR 0474389 (57:14031)
 [W]
 Frank W. Warner, Foundations of differentiable manifolds and Lie groups, SpringerVerlag, New York, 1983. MR 722297 (84k:58001)
 [Z]
 Eberhard Zeidler, Nonlinear functional analysis and its applications, SpringerVerlag, New York, 1990.
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC:
58A14,
58G03
Retrieve articles in all journals
with MSC:
58A14,
58G03
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029947199512975387
PII:
S 00029947(1995)12975387
Keywords:
Differential form,
Hodge decomposition,
harmonic integral,
Sobolev space
Article copyright:
© Copyright 1995 American Mathematical Society
