Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Compact composition operators on the Bloch space


Authors: Kevin Madigan and Alec Matheson
Journal: Trans. Amer. Math. Soc. 347 (1995), 2679-2687
MSC: Primary 47B38; Secondary 30D45, 47B07
DOI: https://doi.org/10.1090/S0002-9947-1995-1273508-X
MathSciNet review: 1273508
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Necessary and sufficient conditions are given for a composition operator $ {C_\phi }f = f{\text{o}}\phi $ to be compact on the Bloch space $ \mathcal{B}$ and on the little Bloch space $ {\mathcal{B}_0}$. Weakly compact composition operators on $ {\mathcal{B}_0}$ are shown to be compact. If $ \phi \in {\mathcal{B}_0}$ is a conformal mapping of the unit disk $ \mathbb{D}$ into itself whose image $ \phi (\mathbb{D})$ approaches the unit circle $ \mathbb{T}$ only in a finite number of nontangential cusps, then $ {C_\phi }$ is compact on $ {\mathcal{B}_0}$. On the other hand if there is a point of $ \mathbb{T} \cap \phi (\mathbb{D})$ at which $ \phi (\mathbb{D})$ does not have a cusp, then $ {C_\phi }$ is not compact.


References [Enhancements On Off] (What's this?)

  • [A] Lars V. Ahlfors, Conformal invariants, McGraw-Hill, New York, 1973. MR 0357743 (50:10211)
  • [ACP] J. M. Anderson, J. Clunie and Ch. Pommerenke, On Bloch functions and normal functions, J. Reine Angew. Math. 270 (1974), 12-37. MR 0361090 (50:13536)
  • [D] Joseph Diestel, Sequences and series in Banach spaces, Springer-Verlag, New York, 1984. MR 737004 (85i:46020)
  • [G] John Garnett, Applications of harmonic measure, Univ. Arkansas Lecture Notes in the Math. Sci., vol. 8, John Wiley & Sons, New York, 1986. MR 888817 (88j:30054)
  • [P] Ch. Pommerenke, Boundary behaviour of conformal maps, Springer-Verlag, Berlin, 1992. MR 1217706 (95b:30008)
  • [RR1] R. Rochberg, Decomposition theorems for Bergman spaces and their applications, Operators and Function Theory (S. C. Power, ed.), Reidel, Dordrecht, 1985, pp. 225-277. MR 810448 (87c:46032)
  • [RR2] R. Rochberg, Interpolation by functions in the Bergman spaces, Michigan Math. J. 29 (1982), 229-236. MR 654483 (83e:30039)
  • [Sh] J. Shapiro, Composition operators and classical function theory, Springer-Verlag, New York, 1993. MR 1237406 (94k:47049)
  • [SSS] J. H. Shapiro, W. Smith, and D. A. Stegenga, Geometric models and compactness of composition operators, J. Funct. Anal. (to appear). MR 1308616 (95m:47051)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 47B38, 30D45, 47B07

Retrieve articles in all journals with MSC: 47B38, 30D45, 47B07


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1995-1273508-X
Keywords: Composition operator, compact operator, Bloch space, cusp
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society