ON C*-ALGEBRAS
ASSOCIATED TO THE CONJUGATION REPRESENTATION
OF A LOCALLY COMPACT GROUP

EBERHARD KANIUTH AND ANNETTE MARKFORT

ABSTRACT. For a locally compact group G, let γ_G denote the conjugation representation of G in $L^2(G)$. In this paper we are concerned with nuclearity of C^*-algebras associated to γ_G and the question of when these are of bounded representation type.

INTRODUCTION

Let G be a locally compact group with left Haar measure and $C^*(G)$ the group C^*-algebra of G. For any unitary representation π of G, there are two C^*-algebras associated to π. The first one is $\pi(C^*(G))$, which henceforth will be denoted $C^*(\pi)$, and the second one is $C^*(\pi(G))$, the C^*-algebra generated by the set of operators $\pi(x)$, $x \in G$, on the Hilbert space of π. If G_d stands for the same group G endowed with the discrete topology and $i_G : G_d \to G$ for the identity, then $C^*(\pi(G)) = C^*(\pi \circ i_G)$. Thus, investigating $C^*(\pi(G))$ naturally involves G_d.

For π the left regular representation λ_G of G, $C^*(\lambda_G)$ is called the reduced group C^*-algebra which is usually denoted by $C_r^*(G)$. It has been a matter of enormous interest in harmonic analysis and is one of the most important examples in the general theory of C^*-algebras. Very recently, Bédos [2] has drawn attention to $C^*(\lambda_G \circ i_G)$ and has shown that amenability of G and of G_d can both be characterized in terms of $C^*(\lambda_G \circ i_G)$.

In this paper we study C^*-algebras associated to the conjugation representation γ_G of G on $L^2(G)$ which is defined by

$$\gamma_G(x)f(y) = \delta(x)^{1/2}f(xy^{-1}yx), \quad f \in L^2(G), \ x, y \in G,$$

where δ denotes the modular function of G. We show that nuclearity of either $C^*(\gamma_G)$ or $C^*(\gamma_G \circ i_G)$ forces G_d to be amenable (Theorem 1.2). Conversely, if G_d is amenable then $C^*(\gamma_G)$ and $C^*(\gamma_G \circ i_G)$ are isomorphic (Theorem 1.7) and nuclear. Unfortunately, in this regard nothing substantial can be said about $C^*(\gamma_G)$ for arbitrary G except that, of course, amenability of G implies that $C^*(\gamma_G)$ is nuclear.

Received by the editors March 7, 1994 and, in revised form, May 16, 1994; originally communicated to the Proceedings of the AMS by Palle E. T. Jorgensen.

1991 Mathematics Subject Classification. Primary 22D25; Secondary 22D10.

The authors' work was supported by the German Research Foundation (DFG).

©1995 American Mathematical Society
These results will be applied in §2, where we deal with the question of when any one of the \(C^* \)-algebras \(C^*(\gamma_G) \), \(C^*(\gamma_{G_d}) \) and \(C^*(\gamma_G \circ i_G) \) is of bounded representation type, that is, possesses only finite-dimensional irreducible representations and there is an upper bound for the dimensions. Clearly, since \(\gamma_G \) is trivial on \(Z(G) \), the centre of \(G \), such conditions can only be reflected by the structure of the factor group \(G/Z(G) \). It turns out that, for a compactly generated Lie group \(G \), any one of the above \(C^* \)-algebras being of bounded representation type is equivalent to the existence of an abelian subgroup of finite index in \(G/Z(G) \) (Theorem 2.10).

The conjugation representation is of interest not least because of its connections to questions on inner invariant means on \(L^\infty(G) \) (compare [17], [18] and [13]) and the structure of \(G/Z(G) \) [14]. However, so far it is much less understood than the left regular representation. The main difficulty arising is that, even for finite groups, the support of \(\gamma_G \) is generally strictly contained in the dual of \(G/Z(G) \) and is intricate to determine (compare [11], [12], [13], [20], and [22]).

Preliminaries and notation

Let \(G \) be a locally compact group. We use the same letter, for example \(\pi \), for a unitary representation of \(G \) and for the corresponding \(* \)-representation of \(C^*(G) \), and \(\mathcal{H}(\pi) \) always denotes the Hilbert space of \(\pi \). Let \(\ker \pi \) be the \(C^* \)-kernel of \(\pi \). If \(S \) and \(T \) are sets of unitary representations of \(G \), then \(S \) is weakly contained in \(T \) \((S \preceq T) \) if \(\bigcap_{\sigma \in S} \ker \sigma \supseteq \bigcap_{\tau \in T} \ker \tau \) or, equivalently, if any positive definite function associated to \(S \) can be uniformly approximated on compact subsets of \(G \) by sums of positive definite functions associated to \(T \). \(S \) and \(T \) are weakly equivalent \((S \sim T) \) if \(S \preceq T \) and \(T \preceq S \). The dual space \(\widehat{G} \) is the set of equivalence classes of irreducible representations of \(G \), endowed with the Jacobson topology. As general references to dual spaces and representation theory we mention [5] and [7].

For any representation of \(\pi \) of \(G \), the support of \(\pi \) is the closed subset \(\text{supp} \pi = \{ p \in \widehat{G} ; p \prec \pi \} \) of \(\widehat{G} \). In particular, the support of the left regular representation \(\lambda_G \) is the reduced dual \(\widehat{G}_r \).

Recall that amenability of \(G \) is equivalent to a number of different conditions: \(C^*(\lambda_G) = C^*(G) \), \(\widehat{G}_r = \widehat{G} \), or \(1_G \preceq \lambda_G \), where \(1_G \) is the trivial one-dimensional representation of \(G \). Concerning amenability we refer to [8], [23] and [24].

Also, we remind the reader that a \(C^* \)-algebra \(A \) is called nuclear if there exists exactly one \(C^* \)-norm on the algebraic tensor product \(A \otimes B \) for every \(C^* \)-algebra \(B \). For properties equivalent to nuclearity and a short overview on this concept we refer to [23, §1.31].

Let \(N \) be a closed normal subgroup of \(G \). Then every representation of \(G/N \) can be lifted to a representation of \(G \), and in this sense will also be regarded as a representation of \(G \). In particular \((G/N)^\sim \subseteq \widehat{G} \). If \(H \) is a subgroup of \(G \), and \(\sigma \) and \(\pi \) are representations of \(H \) and \(G \), respectively, then \(\text{ind}_H^G \sigma \) denotes the representation of \(G \) induced by \(\sigma \) and \(\pi \mid H \) the restriction of \(\pi \) to \(H \). A readable account of the theory of induced representations can be found in [7, Chapter 11]. We will use throughout the fact that inducing and restricting representations are continuous with respect to Fell's topology [6].
Next, let
\[\{e\} = Z_0(G) \subseteq Z(G) = Z_1(G) \subseteq Z_2(G) \subseteq \cdots \]
be the ascending central series and \(G_f \) the finite conjugacy class subgroup of \(G \). For any two subsets \(M, N \) of \(G \) we denote by \(C_M(N) \) the centralizer of \(N \) in \(M \). If \(M = G \) we often omit the index. Using this notation, for discrete groups \(G \), \(\gamma_G \) is weakly equivalent to the set \(\{ \text{ind}_{\gamma_G(a)} C(a); a \in G\} \) (see [13, p. 27]).

For general \(G \) the only available description of \(\text{supp} \gamma_G \) is as follows. Let \(G \) be a \(\sigma \)-compact locally compact group, and suppose that \(C^*(\lambda_G) \) is nuclear. Then by [11, Theorem]
\[\text{supp} \gamma_G = \bigcup_{\pi \in \hat{G}} \text{supp}(\pi \otimes \pi). \]

1. \(C^*(\gamma_G), C^*(\gamma_G \circ i_G), \) AND AMENABILITY

We start with a lemma which will be used in the proof of Theorem 1.2 below as well as in §2.

Lemma 1.1. For any locally compact group \(G \) and \(i_G : G_d \to G \) the identity
\[\lambda_{G_d/(G_d)f} \ll \gamma_G \circ i_G. \]

Proof. The proof is an adaptation of the proof of Theorem 1.8 in [13]. Let \(D = G_d \) and recall that \(\lambda_{D/D_f} \) is the GNS-representation defined by the characteristic function \(\chi_{D_f} \) of \(D_f \). Therefore it suffices to show that given any finite subset \(F \) of \(D \), there exists a positive definite function \(\varphi \) associated to \(\gamma_G \circ i_G \) such that \(\varphi | F = \chi_{D_f} | F \). Set \(F_1 = F \cap D_f \) and \(F_2 = F \setminus F_1 \). Then, by the proof of [13, Theorem 1.8], there exists \(a \in C(F_1) \) such that \(x^{-1}ax \neq a \) for all \(x \in F_2 \).

\(C(F_1) \) is a closed subgroup of finite index in \(G \), and hence is open. Thus we find an open neighbourhood \(V \) of \(a \) in \(G \) such that \(V \subseteq C(F_1) \) and \(x^{-1}Vx \cap V = \emptyset \) for all \(x \in F_2 \). Observe that \(\delta(x) = 1 \) for all \(x \in F_1 \) since \(x^{-1}Vx = V \). Now, let \(f = |V|^{-1/2} \chi_V \) and
\[\varphi(x) = \langle \gamma_G(x)f, f \rangle = \delta(x)^{1/2} |V|^{-1} \int_V \chi_V(x^{-1}yx) \, dy. \]
It follows that \(\varphi(x) = 1 \) for \(x \in F_1 \) as \(V \subseteq C(F_1) \), and \(\varphi(x) = 0 \) for \(x \in F_2 \) since \(x^{-1}Vx \cap V = \emptyset \) for \(x \in F_2 \).

Theorem 1.2. For a locally compact group \(G \) the following are equivalent.

(i) \(G_d \) is amenable.
(ii) \(C^*(\gamma_G \circ i_G) \) is nuclear.
(iii) \(C^*(\gamma_G) \) is nuclear.

Proof. (i) \(\Rightarrow \) (ii) and (i) \(\Rightarrow \) (iii) are obvious, since amenability of \(G_d \) implies that \(C^*(\gamma_G) \) is nuclear, and hence so are the quotients \(C^*(\gamma_G \circ i_G) \) and \(C^*(\gamma_{G_d}) \) of \(C^*(G_d) \) (compare [4, Corollary 4]).

Since \(\lambda_{G_d/(G_d)f} \ll \gamma_G \circ i_G \) (Lemma 1.1), \(C^*(\lambda_{G_d/(G_d)f}) \) is a quotient of \(C^*(\gamma_G \circ i_G) \). Thus (ii) implies nuclearity of \(C^*(\lambda_{G_d/(G_d)f}) \), and by [16, Theorem 4.2] this forces \(G_d/(G_d)_f \) to be amenable. Now groups with finite conjugacy classes are well known to be amenable (see [24, Proposition 12.9 or Corollary]...
14.26]). As the class of amenable groups is closed under forming extensions by amenable groups, \(G_d \) turns out to be amenable. (iii) \(\Rightarrow \) (i) follows in the same way by appealing to Theorem 1.8 of [13] instead of Lemma 1.1.

For \(\gamma_G \) replaced by the left regular representation, Theorem 1.2 has been established in [2, Theorem 3].

Lemma 1.3. Let \(G \) and \(H \) be locally compact groups, and let \(j : H \to G \) be a continuous and injective homomorphism with dense range. Then \(\hat{G} \circ j \subseteq \hat{H} \), and \(\hat{G} \circ j \) is dense in \(\hat{H} \) provided that \(H \) is discrete and amenable.

Proof. Let \(\pi_1, \pi_2 \) be representations of \(G \). If \(\pi_1 \) and \(\pi_2 \) are equivalent, then \(\pi_1 \circ j \) and \(\pi_2 \circ j \) are equivalent representations of \(H \). Conversely, if \(\pi_1 \circ j \) and \(\pi_2 \circ j \) are equivalent, then since \(j(H) \) is dense in \(G \) and representations are strongly continuous, it follows immediately that \(\pi_1 \) and \(\pi_2 \) are equivalent. Moreover, for a representation \(\pi \) of \(G \), \(\pi \) is irreducible if and only if \(\pi \circ j \) is irreducible. Thus \(\pi \to \pi \circ j \) induces an injective mapping from \(\hat{G} \) into \(\hat{H} \).

It is easy to see that the Dirac function \(\delta_e \) on \(H \) can be pointwise approximated by positive definite functions associated to \(\lambda_G \circ j \) [3, Proposition 1]. For \(H \) discrete, this shows that \(\lambda_H \prec \lambda_G \circ j \), and hence \(\hat{G} \circ j \) is dense in \(\hat{H} \) if, in addition, \(H \) is amenable. \(\square \)

Corollary 1.4. Suppose that \(H \) is amenable and discrete, and let \(G \) and \(j \) be as in Lemma 1.3. Then

\[
\{(\pi \circ j) \otimes (\pi \circ j) ; \pi \in \hat{G}\} \sim \{\rho \otimes \rho ; \rho \in \hat{H}\}.
\]

Proof. Let \(P \) and \(R \) denote the set of representations on the left and on the right, respectively. It is clear from \(\hat{G} \circ j \subseteq \hat{H} \) that \(P \prec R \). On the other hand, since \(\hat{G} \circ j \) is dense in \(\hat{H} \) by Lemma 1.3, for \(\rho \in \hat{H} \) every coordinate function of the form

\[
x \rightarrow \langle (\rho \otimes \bar{\rho})(x)(\xi_1 \otimes \xi_2), \eta_1 \otimes \eta_2 \rangle = \langle \rho(x)\xi_1, \eta_1 \rangle \langle \bar{\rho}(x)\xi_2, \eta_2 \rangle,
\]

where \(\xi_1, \eta_1 \in \mathcal{H}(\rho) \) and \(\xi_2, \eta_2 \in \mathcal{H}(\rho) \), can be approximated on finite subsets of \(H \) by a product of functions each of which is a finite sum of positive definite functions associated to \(\pi \circ j \) and \(\pi \circ j, \pi \in \hat{G} \), respectively. It follows that \(\rho \otimes \bar{\rho} \prec P \). \(\square \)

We have to compare \(\gamma_{G_d} \) and \(\gamma_G \circ i_G \) with respect to weak equivalence. As mentioned in the proof of Lemma 1.3, for every locally compact group \(G \), \(\lambda_{G_d} \prec \lambda_G \circ i_G \). In general, however, \(\gamma_{G_d} \) need not be weakly contained in \(\gamma_G \circ i_G \). We will further comment on this in Lemma 1.8 and Remarks 1.9. But at least we have

Corollary 1.5. Suppose that \(G \) is \(\sigma \)-compact and \(H \) is amenable and discrete, and let \(j \) be as in Lemma 1.3. Then \(\gamma_H \prec \gamma_G \circ j \).

Proof. Since \(G \) is amenable and \(\sigma \)-compact, \(\gamma_G \sim \{\pi \otimes \pi ; \pi \in \hat{G}\} \) by the theorem of [11]. Corollary 1.4 yields

\[
\gamma_G \circ j \sim \{(\pi \circ j) \otimes (\pi \circ j) ; \pi \in \hat{G}\} \sim \{\rho \otimes \bar{\rho} ; \rho \in \hat{H}\},
\]

and this latter set weakly contains \(\gamma_H \) [11, Corollary 1]. \(\square \)
Lemma 1.6. Let G be a second countable group such that G_d is amenable. Then $\gamma_G \circ i_G \prec \gamma_{G_d}$.

Proof. There exists a countable dense subset in G as G is second countable. Thus every finite subset of G is contained in some countable dense subgroup H of G. For any such H, $\{\rho \otimes \rho; \rho \in \hat{H}_d\} \sim \gamma_{H_d}$, and hence by Corollary 1.4,

$$\gamma_G \circ j_H \sim \{(\pi \circ j_H) \otimes (\pi \circ j_H); \pi \in \hat{G}\} \sim \{\rho \otimes \rho; \rho \in \hat{H}_d\} \sim \gamma_{H_d},$$

where j_H denotes the inclusion $H_d \to G$. On the other hand, γ_{H_d} is a subrepresentation of $\gamma_{G_d}|H_d$ and

$$\langle \gamma_G \circ i_G(x)f, f \rangle = \langle \gamma_G \circ j_H(x)f, f \rangle$$

for all $x \in H$ and $f \in L^2(G)$. This proves $\gamma_G \circ i_G \prec \gamma_{G_d}$. □

Theorem 1.7. Let G be a locally compact group. If G_d is amenable, then $\gamma_G \circ i_G \prec \gamma_{G_d}$, and $C^*(\gamma_G \circ i_G)$ and $C^*(\gamma_{G_d})$ are isomorphic.

Proof. We first reduce to the σ-compact case. To that end, let \mathcal{H} denote the set of all σ-compact open subgroups H of G, and suppose that we already know $\gamma_H \circ i_H \prec \gamma_{H_d}$ for every $H \in \mathcal{H}$. To show that $\gamma_G \circ i_G \prec \gamma_{G_d}$, let a finite subset F of G and $f \in L^2(G)$ be given and consider the function $\varphi(x) = \langle \gamma_G(x)f, f \rangle$. Choose $H \in \mathcal{H}$ such that $F \subseteq H$ and $f|G\backslash H = 0$. Then $\varphi(x) = \langle \gamma_H(x)f|H, f|H \rangle$ for all $x \in H$. Since $\gamma_H \circ i_H \prec \gamma_{H_d}$, φ can be approximated on F by sums of positive definite functions associated to γ_{H_d}. It follows that

$$\gamma_G \circ i_H \prec \gamma_{H_d} \prec \gamma_{G_d}|H_d,$$

and hence $\gamma_G \circ i_G \prec \gamma_{G_d}$. That, conversely, $\gamma_{G_d} \prec \gamma_G \circ i_G$ is seen in the same way.

Recall next that, by Corollary 1.5, $\gamma_H \circ i_H \prec \gamma_{H_d}$ for each $H \in \mathcal{H}$. From Lemma 1.6 we know that conversely $\gamma_H \circ i_H \prec \gamma_{H_d}$, provided that H is second countable. Thus it remains to extend this to the case of a σ-compact group H.

Being σ-compact, H is a projective limit of second countable groups $H_\alpha = H/K_\alpha$, $\alpha \in A$, where the K_α are compact. Now, the set

$$\{f \in C_c(H); \text{ for some } \alpha \in A, f(xk) = f(x) \text{ for all } x \in H \text{ and } k \in K_\alpha \}$$

is dense in $C_c(H)$ in the inductive limit topology. Therefore it suffices to approximate a function $x \to \langle \gamma_H(x)f, f \rangle$, where $f \in C_c(H)$ is constant on cosets of some $K = K_\alpha$, on finite subsets of H by sums of positive definite functions associated to γ_{H_d}. Define g on H/K by $g(xK) = f(x)$ for $x \in H$. Then

$$\langle \gamma_H(x)f, f \rangle = \langle \gamma_{H/K}(xK)g, g \rangle,$$

and by Lemma 1.6 the function on the right can be approximated on finite subsets of H/K by sums of positive definite functions associated to $\gamma_{(H/K)_d}$. Now, $(H/K)_d = H_d/K_d$, and by [20, Lemma 1.1], $\gamma_{H_d/K_d} \prec \gamma_{H_d}$ since H_d is amenable. This shows that $\gamma_H \circ i_H \prec \gamma_{H_d}$ and finishes the proof. □

Obviously, if G_d is amenable, then so is G. As to the regular representation, it has been observed in [2, Theorem 3] that if G is amenable and $\lambda_{G_d} \sim \lambda_G \circ i_G$, then G_d is amenable. In fact, under these assumptions,

$$1_{G_d} = 1_G \circ i_G \prec \lambda_G \circ i_G \sim \lambda_{G_d}.$$
Although it is conceivable, we do not know whether, as a converse to Theorem 1.7, amenability of G and $\gamma_{G_d} \sim \gamma_G \circ i_G$ imply that G_d is amenable.

We conclude this section by returning to the question of when $\gamma_{G_d} \prec \gamma_G \circ i_G$. Recall that a locally compact group is said to be an [SIN]-group if G has a system of neighbourhoods V of the identity such that $x^{-1}Vx = V$ for all $x \in G$.

Lemma 1.8. If G is an [SIN]-group, then $\gamma_{G_d} \prec \gamma_G \circ i_G$.

Proof. It suffices to approximate the function $x \mapsto \chi_{C(a)}(x) = \langle \gamma_{G_d}(x)\delta_a, \delta_a \rangle$, $a \in G$, on finite subsets F of G by positive definite functions associated to $\gamma_G \circ i_G$. Now, given such an F, there exists an invariant symmetric neighbourhood V of e in G such that $x^{-1}ax \notin V^2a$ for all $x \in F \setminus C(a)$. Let $\varphi = |V|^{-1/2}\chi_V$; then it is easily verified that

$$\langle \gamma_G(x)\varphi, \varphi \rangle = |V|^{-1}\int_V \chi_V(x^{-1}vax) \, dv$$

is equal to 1 for all $x \in C(a)$ and equal to 0 for all $x \in F \setminus C(a)$. □

Remarks 1.9. (i) Suppose that $C^*(\lambda_G)$ is nuclear and that $\gamma_{G_d} \prec \gamma_G \circ i_G$. Then G is amenable. This can be seen as follows. Since

$$l_{G_d} \prec \gamma_{G_d} \prec \gamma_G \circ i_G \prec \lambda_G \circ i_G$$

[11, Proposition 1], there is a homomorphism of $C^*(\lambda_G(G)) = C^*(\lambda_G \circ i_G)$ onto \mathbb{C}. By [2, Theorem 1] this implies that G is amenable. In particular, for any noncompact connected semisimple Lie group G, γ_{G_d} is not weakly contained in $\gamma_G \circ i_G$.

(ii) By Lemma 1.8 for G compact, $\gamma_{G_d} \prec \gamma_G \circ i_G$. Moskowitz [22] has shown that, for G a compact connected Lie group, $\text{supp} \gamma_G = (G/Z(G))^\wedge$. This can be used to compare the sets $\text{supp} (\gamma_G \circ i_G)$, $(\text{supp} \gamma_G) \circ i_G$, and $\text{supp} \gamma_{G_d}$. An illustrating example let us look at $G = SO(3)$. Then $(\text{supp} \gamma_G) \circ i_G = \widehat{G} \circ i_G$, and $\widehat{G} \circ i_G$ fails to be dense in \widehat{G} (see [3, Corollary 1]).

Considering G_d, it follows from [13, Corollary 1.9] that $\text{supp} \gamma_{G_d} = (G_d)^\wedge \cup \{1_{G_d}\}$ since $(G_d)^\wedge$ is trivial and the centralizer of each matrix in $SO(3) \setminus \{E\}$ has a subgroup of index 2, which is conjugate to $SO(2)$. Thus $\text{supp} \gamma_{G_d} \cap (\text{supp} \gamma_G) \circ i_G = \{1_{G_d}\}$ and $\text{supp} \gamma_{G_d}$ is strictly contained in $\text{supp}(\gamma_G \circ i_G)$, since 1_{G_d} is the only finite-dimensional representation in $\text{supp} \gamma_{G_d}$.

2. *When is $C^*(\gamma_G)$ of bounded representation type?*

Let A be a C^*-algebra and \widehat{A} its dual space. A is said to be of bounded representation type (b.r.t.) if every $\pi \in \widehat{A}$ is finite dimensional and if there is an upper bound for these dimensions. The analogous notion applies to representations. Thus, a representation ρ of A is of b.r.t. if $\rho(A)$ is of b.r.t. Moreover, a locally compact group G is of bounded representation type if $C^*(G)$ has this property. The first paper dealing with such groups that we are aware of is [15]. Groups of b.r.t. have finally been identified by Moore [21] as precisely those which have an abelian subgroup of finite index.

In this section we are interested in the question of when the C^*-algebras $C^*(\gamma_G)$, $C^*(\gamma_{G_d})$ and $C^*(\gamma_G \circ i_G)$ are of bounded representation type. For
such a particular representation, this appears to be a rather intricate problem. We succeeded in resolving it for compactly generated Lie groups, where by Lie group we mean a locally compact group G whose connected component G_0 of the identity is open and is an analytic group. However, we were unable to characterize non-finitely-generated discrete groups G or totally disconnected compact groups G with $C^*({\gamma}_G)$ of b.r.t.

It is worth commenting here on the same question for the left regular representation. Now, for any locally compact group H, $C^*({\lambda}_H)$ being of b.r.t. implies that H has an abelian subgroup of finite index. Indeed, this follows from [26, Satz 2] and can also be deduced from Moore’s results [21]. As to $C^*({\lambda}_H \circ i_H)$, notice that by [2, Lemma 2] ${\lambda}_H$ is weakly contained in ${\lambda}_H \circ i_H$, so that $C^*({\lambda}_H)$ is of b.r.t. provided that $C^*({\lambda}_H \circ i_H)$ is.

Remarks 2.1. (i) If γ_G is of bounded representation type (b.r.t.), then $\gamma_G|H$ is of b.r.t. for every closed subgroup H of G. Indeed, let

$$T = \bigcup_{\pi \in \supp \gamma_G} \supp(\pi|H) \subseteq \hat{H},$$

and suppose that $\dim \pi \leq d$ for all $\pi \in \supp \gamma_G$. Then $\dim \tau \leq d$ for all $\tau \in T$, and hence for all $\tau \in \bar{T}$. On the other hand, $\bar{T} = \supp(\gamma_G|H)$ since T is weakly equivalent to $\gamma_G|H$.

(ii) Let H be an open subgroup of G. If γ_G is of b.r.t., then so is γ_H. In fact, by (i) $\gamma_G|H$ is of b.r.t., and γ_H is a subrepresentation of $\gamma_G|H$ as $L^2(H)$ is a subspace of $L^2(G)$. Notice, however, that in general for a closed subgroup H of G, γ_H need not even be weakly contained in $\gamma_G|H$ (see [14]).

(iii) If γ_G is of b.r.t. and $C^*({\lambda}_G)$ is nuclear, then G is amenable. The nuclearity assumption guarantees that $\gamma_G \prec {\lambda}_G$ [11, Proposition 1]. Now, it is well known that G is amenable provided that λ_G weakly contains a finite-dimensional representation. Recall that $C^*({\lambda}_G) (C^*(G)$, as a matter of fact) is nuclear if G/G_0 is amenable.

If N is a closed normal subgroup of G, then G acts on \hat{N} by $(x, \lambda) \rightarrow \lambda^x$, where $\lambda^x(n) = \lambda(x^{-1}nx)$ for $x \in G$ and $n \in N$, and G_λ denotes the stability subgroup of λ in G under this action.

Lemma 2.2. Let G be a locally compact group, and suppose that $\supp \gamma_G$ contains a dense subset of finite-dimensional representations. Let N be a closed normal subgroup of G such that $N/N \cap Z(G)$ is a vector group. Then there exists a closed subgroup H of finite index in G such that $N \subseteq Z_\Sigma(H)$.

Proof. Let $\Pi = \{\pi \in \supp \gamma_G; \dim \pi < \infty\}$ and $\Lambda = \bigcup_{\pi \in \Pi} \supp(\pi|N)$. By hypothesis, $\gamma_G|N \sim \Pi|N \sim \Lambda$, so that Λ separates the points of $\hat{V} = N/N \cap Z(G)$. \hat{V} and hence \bar{V} being a vector group, Λ contains a basis $\{\lambda_1, \ldots, \lambda_m\}$ of \bar{V}. Now, $H = \bigcap_{j=1}^m G_{\lambda_j}$ has finite index in G and $\lambda_j = \lambda_j$ for all $h \in H$ and $1 \leq j \leq m$. Since continuous automorphisms of vector groups are linear, it follows that $\lambda^h = \lambda$ for all $\lambda \in \hat{V}$ and $h \in H$. This implies that $N/N \cap Z(G) \subseteq Z(H/N \cap Z(G))$ and hence $N \subseteq Z_\Sigma(H)$. \square

Lemma 2.3. Let G and γ_G be as in Lemma 2.2. Let N be a closed normal subgroup of G such that $N/N \cap Z(G) = \mathbb{T}^m$ for some $m \in \mathbb{N}$. Then $N \subseteq Z_\Sigma(H)$ for some subgroup H of finite index in G.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Proof. Let Π and Λ be as in the proof of the previous lemma. Then Λ generates \((N/N \cap Z(G))^\sim = Z^m\), so that \(G_1\) has finite index in \(G\) for each \(λ \in Z^m\). As \(Z^m\) is finitely generated, we find a subgroup \(H\) of finite index in \(G\) such that \(λ^h = λ\) for all \(λ \in Z^m\) and all \(h \in H\). This proves that \(N/N \cap Z(G) \subseteq Z(H/N \cap Z(G))\) and hence \(N \subseteq Z_2(H)\). □

Lemma 2.4. Let \(K\) be a compact connected normal subgroup of the Lie group \(G\). If \(γ_G\) is of b.r.t., then the commutator subgroup \(K'\) of \(K\) is contained in the centre of \(G\).

Proof. It suffices to show that \(K' \subseteq Z(H)\) for every \(σ\)-compact open subgroup \(H\) of \(G\). Since \(γ_H\) is of b.r.t. for every such \(H\), we can assume that \(G\) is \(σ\)-compact and hence second countable as it is a Lie group. Recall that by [19, Lemma 3.1], for any second countable group \(G\), \(γ_G\) is unitarily equivalent to the restriction of \(\text{ind}_{\Delta_G}^{G \times G} 1_{Δ_G}\) to \(Δ_G\) where \(Δ_G\) denotes the diagonal subgroup of \(G \times G\). Since \(K\) is compact and \(G\) is second countable, \(Δ_K\) and \(Δ_G\) are regularly related in \(G \times G\) in the sense of Mackey. Therefore, by [6, Theorem 5.3], with \(Δ_G^u = uΔ_Gu^{-1}\) for \(u \in G \times G\),

\[
γ_G | K = \text{ind}_{Δ_G}^{G \times G} 1_{Δ_G} | Δ_K \sim \{\text{ind}_{u^{-1}Δ_Gu \cap Δ_K}^{Δ_K} 1_{u^{-1}Δ_Gu \cap Δ_K} ; u \in G \times G\}
\]

\[
= \{\text{ind}_{C(a) \cap K}^{K} 1_{C(a) \cap K} ; a \in G\} = \{\text{ind}_{C(a)}^{K} ; a \in G\}.
\]

Fix \(a \in G\), and let \(N(a)\) denote the greatest normal subgroup of \(K\) contained in \(C_K(a)\). There exist finitely many \(x_1, \ldots, x_m \in K\) such that

\[
N(a) = \bigcap_{j=1}^{m} x_j^{-1}C_K(a)x_j
\]

(compare [1, Proposition 2.1]). By [6, Theorem 5.5] the \(m\)-fold tensor product \((γ_G | K)^{σm}\) weakly contains

\[
\text{ind}_{C(a) \cap K}^{K} 1_{C(a) \cap K} \bigotimes_{j=1}^{m} x_j^{-1}C_K(a)x_j = \text{ind}_{N(a)}^{K} 1_{N(a)}.
\]

Now tensor products of representations of b.r.t. are again of b.r.t. [25, Lemma 5]. Thus \(\text{ind}_{N(a)}^{K} 1_{N(a)}\) is of b.r.t., and since \(K\) is connected this yields that \(K/N(a)\) is abelian. It follows that

\[
K/ \left(\bigcap_{a \in G} (C(a) \cap K) \right) = K/ \bigcap_{a \in G} N(a)
\]

is abelian. This proves \(K' \subseteq \bigcap_{a \in G} C(a) = Z(G)\). □

Proposition 2.5. Let \(G\) be a Lie group and \(N\) a connected closed normal subgroup of \(G\). If \(C^*(γ_G)\) is of b.r.t., then there exists a subgroup \(H\) of finite index in \(G\) such that \(N \subseteq Z_6(H)\).

Proof. Let \(M = N \cap Z(G)\). Since \(γ_G | N\) separates the points of \(N/M\), \(N/M\) is a maximally almost periodic connected Lie group. By the Freudenthal-Weil theorem [5, Théorème 16.4.6] \(N/M\) is a direct product of a vector group \(W\) and a compact connected Lie group \(K\).

Let \(q : G \to G/M\) be the quotient homomorphism. As \(K\) is normal in \(G/M\), it follows from Lemma 2.4 that \(K' \subseteq Z(G/M)\) and hence \(q^{-1}(K') \subseteq \)
$\mathbb{Z}_2(G)$. Applying Lemma 1.1 in [14] twice gives $\gamma_{G/q^{-1}(K')} \prec \gamma_G$, so that $\gamma_{G/q^{-1}(K')}^2$ is of b.r.t. Now, K/K' is a normal torus in $G/q^{-1}(K')$. It follows from Lemma 2.3 that $K/K' \subseteq \mathbb{Z}_2(H_1/q^{-1}(K'))$ for some subgroup H_1 of finite index in G. Thus $q^{-1}(K') \subseteq \mathbb{Z}_2(H_1)$.

Now, moving to $G/q^{-1}(K)$, similar arguments apply to the normal vector subgroup W of $G/q^{-1}(K)$. Again, since continuous automorphisms of vector groups are linear, $W \cap \mathbb{Z}(G/q^{-1}(K))$ is a vector group and hence so is $W/W \cap \mathbb{Z}(G/q^{-1}(K))$. Lemma 2.2 yields that $W \subseteq \mathbb{Z}_2(H_2/q^{-1}(K))$ for some subgroup H_2 of finite index in G containing $q^{-1}(K)$. With $H = H_1 \cap H_2$, we obtain that $N \subseteq \mathbb{Z}_6(H)$. □

Remark 2.6. Let D be a discrete group with γ_D of b.r.t. Then, since $\lambda_{D/D_f} < \gamma_D$ [13, Theorem 1.8], λ_{D/D_D} is of b.r.t. and therefore D/D_f has an abelian subgroup of finite index (compare [26, Satz 1]). In particular, D is amenable. It is worthwhile to remind the reader that in order to conclude that a discrete group G is almost abelian it is only required that λ_G is of type I [10].

Corollary 2.7. If G is a Lie group with $C^*(\gamma_G)$ of b.r.t., then G_d is amenable and $C^*(\gamma_{G_d})$ and $C^*(\gamma_G \circ i_G)$ are both of b.r.t.

Proof. By Proposition 2.5, $G_0 \subseteq \mathbb{Z}_m(H)$ for some $m \in \mathbb{N}$ and some subgroup H in G of finite index. In particular, G_0 is nilpotent. Let $D = G/G_0$; then repeated application of [14, Lemma 1.1] gives $\gamma_D \prec \gamma_G$. Thus γ_D is of b.r.t., and hence D is amenable (Remark 2.6). Since $(G_0)_d$ and G_0 are amenable, G_d is amenable.

By what we have seen in Theorem 1.7, $\gamma_{G_d} \sim \gamma_G \circ i_G$, and $G^*(\gamma_{G_d})$ and $C^*(\gamma_G \circ i_G)$ are isomorphic. Thus it remains to recognize that γ_{G_d} is of b.r.t. But this follows because γ_G is of b.r.t. and $\text{supp} \gamma_{G_d}$ is contained in the closure of $(\text{supp} \gamma)_G \circ i_G$ in \tilde{G}_d. □

Corollary 2.8. For a connected group G, $C^*(\gamma_G)$ is of bounded representation type if and only if G is 2-step nilpotent.

Proof. Clearly, if $G/Z(G)$ is abelian, then every $\pi \in \text{supp} \gamma_G$ is one-dimensional. Conversely, suppose that G is connected and γ_G is of b.r.t. Then G is a projective limit of Lie groups $G_i = G/K_i$, $i \in I$, where the K_i are compact, and every γ_{G_i} is of b.r.t. Let $q_i : G \to G_i$ denote the quotient homomorphism. Since $Z(G) = \bigcap_{i \in I} q_i^{-1}(Z(G_i))$, G is 2-step nilpotent if all G_i are. Therefore we can assume that G is a Lie group.

By Corollary 2.7, γ_{G_f} is of b.r.t., and hence G/G_f has an abelian subgroup of finite index. For any $x \in G_f$, $C(x)$ is a closed subgroup of finite index in G, so that $x \in Z(G)$. It follows that $\mathbb{G}_f \subseteq Z(G)$, and G/\mathbb{G}_f has a closed abelian subgroup of finite index. G being connected, we obtain that $G/Z(G)$ is abelian. □

Lemma 2.9. Let D be a discrete group such that γ_D is of b.r.t. For $x \in D$ let $N(x)$ denote the greatest normal subgroup of D contained in $C(x)$. Suppose that for some finite subset F of D, $\bigcap_{x \in F} N(x) = Z(D)$. Then $D/Z(D)$ has an abelian subgroup of finite index.
Proof. Since \(\text{ind}^D_{C(x)} 1_{C(x)} \prec \gamma_D \) for each \(x \in D \), all these quasi-regular representations are of b.r.t. The kernel of \(\text{ind}^D_{C(x)} 1_{C(x)} \) is \(N(x) \) as is easily verified.

Now, \(\text{ind}^D_{C(x)} 1_{C(x)} \) being of b.r.t. is equivalent to the algebra generated by the operators \(\text{ind}^D_{C(x)} 1_{C(x)}(y) \), \(y \in D \), on \(L^2(D/C(x)) \) satisfying a standard polynomial identity (see [15] and [21]).

Therefore, by Satz 1 of [26], the factor group \(D/N(x) \), which is isomorphic to \(\text{ind}^D_{C(x)} 1_{C(x)}(D) \), has an abelian subgroup \(A(x)/N(x) \) of finite index. With

\[
A = \bigcap_{x \in F} A(x)
\]

it follows that \(A \) has finite index in \(D \) and

\[
A' \subseteq \bigcap_{x \in F} A(x)' \subseteq \bigcap_{x \in F} N(x) = Z(D). \quad \Box
\]

Theorem 2.10. For a compactly generated Lie group \(G \) the following conditions are equivalent:

(i) \(C^*(\gamma_G) \) is of bounded representation type.
(ii) \(C^*(\gamma_{G_d}) \) is of bounded representation type.
(iii) \(C^*(\gamma_G \circ i_G) \) is of bounded representation type.
(iv) \(G/Z(G) \) possesses an abelian subgroup of finite index.

Proof. (iv) \(\Rightarrow \) (i), (ii), (iii) are clear since all three representations \(\gamma_G \), \(\gamma_{G_d} \), and \(\gamma_G \circ i_G \) are trivial on \(Z(G) = Z(G_d) \). (i) \(\Rightarrow \) (ii) and (i) \(\Rightarrow \) (iii) are consequences of Corollary 2.7.

Notice next that (iii) \(\Rightarrow \) (ii). In fact, if \(C^*(\gamma_{G_d}) \) is of b.r.t., then so is \(C^*(\lambda_{G_d}G/G_d) \) by Lemma 1.1. This implies that \(G_d/(G_d)_f \) is almost abelian and hence \(G_d \) is amenable. Theorem 1.8 now shows that \(C^*(\gamma_{G_d}) \) is of b.r.t.

It remains to show (ii) \(\Rightarrow \) (iv). For that we want to apply Lemma 2.9. Thus we have to produce a finite subset \(F \) of \(G \) such that \(\bigcap_{x \in F} N(x) = Z(G) \).

To construct \(F \) let \(Z_0 = Z(G) \cap G_0 \) and notice that \(\gamma_G | G_0 \) separates the points of \(G_0/Z_0 \) and is of b.r.t. by Remarks 2.1 (i). Therefore \(G_0/Z_0 \) is a maximally almost periodic connected Lie group. It follows from the Freudenthal-Weil theorem (see [5, Théorème 16.4.6]) that \(G_0/Z_0 \) is a direct product of a compact Lie group \(K \) and some \(\mathbb{R}^m \). Now, \(\gamma_{G/Z_0} \) is of b.r.t. and \(K \) is normal in \(G/Z_0 \). An application of Lemma 2.4 yields that \(K \) is 2-step nilpotent. As is well known this implies that \(K \), being a compact connected Lie group, is a torus \(T^n \).

Let \(q : G \to G/G_0 \) and \(h : G \to G/Z_0 \) denote the quotient homomorphisms. Choose a finite subset \(F_1 \) of \(G \) such that \(q(F_1) \) generates \(G/G_0 \) as a group. Both \(\mathbb{R}^m \) and \(T^n \) contain finitely generated dense subgroups. Thus there exist finite subsets \(F_2 \) and \(F_3 \) of \(G_0 \) such that \(h(F_2) \) and \(h(F_3) \) generate a dense subgroup of \(\mathbb{R}^m \) and \(T^n \), respectively. Finally, let \(F = F_1 \cup F_2 \cup F_3 \). It is now obvious that \(F \cup Z_0 \) generates a dense subgroup of \(G \), whence \(C(F) = Z(G) \). This completes the proof. \(\Box \)

One might well expect that Theorem 2.10 remains true when the assumption that \(G \) be compactly generated is dropped. However, as mentioned earlier, we did not succeed in proving that if \(G \) is a (not necessarily finitely generated)
discrete group with $\mathcal{C}^*(\gamma_G)$ of b.r.t., then $G/Z(G)$ must be almost abelian. This is surprising since we already know that G/G_f is almost abelian (Remark 2.6). The point is that it seems to be difficult to handle discrete groups with finite conjugacy classes (so-called [FC]-groups). We finish the paper by looking at a special class of [FC]-groups.

Example 2.11. Let G be the restricted direct product of finite groups G_i, $i \in I$. We claim that the following conditions are equivalent:

(i) $\mathcal{C}^*(\gamma_G)$ is of bounded representation type.

(ii) $\dim \pi < \infty$ for every $\pi \in \supp(\gamma_G)$.

(iii) G_i is 2-step nilpotent for almost all $i \in I$.

Condition (iii) implies that $G/Z_2(G)$ is finite, whence (i) follows. To verify (ii) \Rightarrow (iii), first consider a finite group F. Suppose that $\supp(\sigma \otimes \tau) \subseteq (F/F')^\sim$ for all $\sigma \in \tilde{F}$. Then $\sigma | F'$ has to be a multiple of a G-invariant character for all $\sigma \in \tilde{F}$, and this yields $F' \subseteq Z(F)$. Thus, if F fails to be 2-step nilpotent, then for at least one $\sigma \in \tilde{F}$, $\sigma \otimes \tau$ has an irreducible subrepresentation of dimension ≥ 2.

Now, suppose that G_i is not 2-step nilpotent for all i in some infinite subset J of I. For each $i \in J$, choose $\sigma_i \in \tilde{G}_i$ and $\tau_i \in \supp(\sigma_i \otimes \tau_i)$ with $\dim \tau_i \geq 2$. For $i \in I \setminus J$, let $\sigma_i = \tau_i = 1_{G_i}$. The infinite tensor products $\pi = \bigotimes_{i \in I} \sigma_i$ and $\rho = \bigotimes_{i \in I} \tau_i$ are irreducible [9, §11], ρ is infinite dimensional, and $\rho \in \supp(\pi \otimes \pi)$. This contradicts (ii).

ACKNOWLEDGMENT

The authors are indebted to the referee for some valuable comments.

REFERENCES

FACHBEREICH MATHEMATIK/INFORMATIK, UNIVERSITÄT PADERBORN, D-33095 PADERBORN, GERMANY
E-mail address: kaniuth@uni-paderborn.de