Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On $ C\sp *$-algebras associated to the conjugation representation of a locally compact group


Authors: Eberhard Kaniuth and Annette Markfort
Journal: Trans. Amer. Math. Soc. 347 (1995), 2595-2606
MSC: Primary 22D25; Secondary 46L05
DOI: https://doi.org/10.1090/S0002-9947-1995-1277118-X
MathSciNet review: 1277118
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For a locally compact group $ G$, let $ {\gamma _G}$ denote the conjugation representation of $ G$ in $ {L^2}(G)$. In this paper we are concerned with nuclearity of $ {C^*}$-algebras associated to $ {\gamma _G}$ and the question of when these are of bounded representation type.


References [Enhancements On Off] (What's this?)

  • [1] L. Baggett and K. F. Taylor, On asymptotic behaviour of induced representations, Canad. J. Math. 34 (1982), 220-232. MR 650861 (84j:22017)
  • [2] E. Bédos, On the $ {C^*}$-algebra generated by the left regular representation of a locally compact group, Proc. Amer. Math. Soc. 120 (1994), 603-608. MR 1181157 (94d:22004)
  • [3] M. B. Bekka and A. Valette, On duals of Lie groups made discrete, J. Reine Angew. Math. 439 (1993), 1-10. MR 1219692 (94k:22003)
  • [4] M. D. Choi and E. G. Effros, Nuclear $ {C^*}$-algebras and injectivity; the general case, Indiana Univ. Math. J. 26 (1977), 443-446. MR 0430794 (55:3799)
  • [5] J. Dixmier, Les $ {C^*}$-algebres et leurs représentations, Gauthier-Villars, Paris, 1964. MR 0171173 (30:1404)
  • [6] J. M. G. Fell, Weak containment and induced representations of groups. II, Trans. Amer. Math. Soc. 110 (1964), 424-447. MR 0159898 (28:3114)
  • [7] J. M. G. Fell and R. S. Doran, Representations of $ *$-algebras, locally compact groups, and Banach $ *$-algebraic bundles. Vol. 2, Academic Press, San Diego, CA, 1988.
  • [8] F. P. Greenleaf, Invariant means on topological groups, van Nostrand, New York, 1969. MR 0251549 (40:4776)
  • [9] A. Guichardet, Tensor products of $ {C^*}$-algebras. II: Infinite tensor products, Lecture Notes No. 13, Aarhus Univ. Math. Inst., Aarhus, 1969.
  • [10] E. Kaniuth, Der Typ der regulären Darstellung diskreter Gruppen, Math. Ann. 182 (1969), 334-339. MR 0260896 (41:5516)
  • [11] -, On the conjugation representation of a locally compact group, Math. Z. 202 (1989), 275-288. MR 1013090 (90k:22003)
  • [12] E. Kaniuth and A. Markfort, Irreducible subrepresentations of the conjugation representation of finite $ p$-groups, Manuscripta Math. 74 (1992), 161-175. MR 1147560 (93d:20018)
  • [13] -, The conjugation representation and inner amenability of discrete groups, J. Reine Angew. Math. 432 (1992), 23-37. MR 1184756 (93m:22006)
  • [14] -, Locally compact groups whose conjugation representations satisfy a Kazhdan type property or have countable support, Math. Proc. Cambridge Philos. Soc. 116 (1994), 79-97. MR 1274160 (95d:22006)
  • [15] I. Kaplansky, Groups with representations of bounded degree, Canad. J. Math. 1 (1949), 105-112. MR 0028317 (10:428f)
  • [16] E. C. Lance, On nuclear $ {C^*}$-algebras, J. Funct. Anal. 12 (1973), 157-176. MR 0344901 (49:9640)
  • [17] A. T. Lau and A. L. T. Paterson, Operator theoretic characterizations of $ [IN]$-groups and inner amenability, Proc. Amer. Math. Soc. 102 (1988), 893-897. MR 934862 (89f:43003)
  • [18] -, Inner amenable locally compact groups, Trans. Amer. Math. Soc. 325 (1991), 155-169. MR 1010885 (91h:43002)
  • [19] G. W. Mackey, Induced representations of locally compact groups. II: The Frobenius reciprocity theorem, Ann. of Math. (2) 58 (1953), 193-221. MR 0056611 (15:101a)
  • [20] A. Markfort, On the support of the conjugation representation for solvable locally compact groups, Forum Math. 6 (1994), 431-449. MR 1277706 (95d:22007)
  • [21] C. C. Moore, Groups with finite dimensional irreducible representations, Trans. Amer. Math. Soc. 166 (1972), 401-410. MR 0302817 (46:1960)
  • [22] M. Moskowitz, On a certain representation of a compact group, J. Pure Appl. Algebra 36 (1985), 159-165. MR 787170 (86k:22033)
  • [23] A. L. T. Paterson, Amenability, Amer. Math. Soc., Providence, RI, 1988.
  • [24] J. P. Pier, Amenable locally compact groups, Wiley, New York, 1984. MR 767264 (86a:43001)
  • [25] G. Schlichting, Polynomidentitäten und Permutationsdarstellungen lokalkompakter Gruppen, Invent. Math. 55 (1979), 97-106. MR 553703 (81d:22006)
  • [26] -, Polynomidentitäten und Darstellungen von Gruppen, Monatsh. Math. 90 (1980), 311-313. MR 596897 (82g:22006)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 22D25, 46L05

Retrieve articles in all journals with MSC: 22D25, 46L05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1995-1277118-X
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society