Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Principally polarized ordinary abelian varieties over finite fields


Author: Everett W. Howe
Journal: Trans. Amer. Math. Soc. 347 (1995), 2361-2401
MSC: Primary 11G25; Secondary 11G10, 14K15
DOI: https://doi.org/10.1090/S0002-9947-1995-1297531-4
MathSciNet review: 1297531
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Deligne has shown that there is an equivalence from the category of ordinary abelian varieties over a finite field $ k$ to a category of $ {\mathbf{Z}}$-modules with additional structure. We translate several geometric notions, including that of a polarization, into Deligne's category of $ {\mathbf{Z}}$-modules. We use Deligne's equivalence to characterize the finite group schemes over $ k$ that occur as kernels of polarizations of ordinary abelian varieties in a given isogeny class over $ k$. Our result shows that every isogeny class of simple odd-dimensional ordinary abelian varieties over a finite field contains a principally polarized variety. We use our result to completely characterize the Weil numbers of the isogeny classes of two-dimensional ordinary abelian varieties over a finite field that do not contain principally polarized varieties. We end by exhibiting the Weil numbers of several isogeny classes of absolutely simple four-dimensional ordinary abelian varieties over a finite field that do not contain principally polarized varieties.


References [Enhancements On Off] (What's this?)

  • [1] L. M. Adleman and M.-D. A. Huang, Primality testing and abelian varieties over finite fields, Lecture Notes in Math., vol. 1512, Springer-Verlag, New York, 1992. MR 1176511 (93g:11128)
  • [2] J. V. Armitage, On a theorem of Hecke in number fields and function fields, Invent. Math. 2 (1967), 238-246. MR 0213324 (35:4188)
  • [3] P. Deligne, Variétés abéliennes ordinaires sur un corps fini, Invent. Math. 8 (1969), 238-243. MR 0254059 (40:7270)
  • [4] P. Deligne and D. Mumford, The irreducibility of the space of curves of a given genus, Inst. Hautes Études Sci. Publ. Math. No. 36 (1969), 75-109. MR 0262240 (41:6850)
  • [5] A. Fröhlich, Local fields, Algebraic Number Theory (J. W. S. Cassels and A. Fröhlich, eds.), Academic Press, New York, 1986, pp. 1-41. MR 0236145 (38:4443)
  • [6] T. Honda, Isogeny classes of abelian varieties over finite fields, J. Math. Soc. Japan 20 (1968), 83-95. MR 0229642 (37:5216)
  • [7] E. W. Howe, Kernels of polarizations of abelian varieties over finite fields, submitted for publication.
  • [8] N. Katz, Serre-Tate local moduli, Surfaces Algébriques (J. Giraud, L. Illusie, and M. Raynaud, eds.), Lecture Notes in Math., vol. 868, Springer-Verlag, Berlin, 1981, pp. 138-202. MR 638600 (83k:14039b)
  • [9] M.-A. Knus, Quadratic and Hermitian forms over rings, Grundlehren Math. Wiss., vol. 294, Springer-Verlag, New York, 1991. MR 1096299 (92i:11039)
  • [10] W. Messing, The crystals associated to Barsotti-Tate groups, Lecture Notes in Math., vol. 264, Springer-Verlag, Berlin, 1972. MR 0347836 (50:337)
  • [11] J. S. Milne, Abelian varieties, Arithmetic Geometry (G. Cornell and J. H. Silverman, eds.), Springer-Verlag, New York, 1986, pp. 103-150. MR 861974
  • [12] D. Mumford, Abelian varieties, Oxford University Press, Oxford, 1985. MR 0282985 (44:219)
  • [13] M. V. Nori and V. Srinivas, Canonical liftings, appendix to: V. B. Mehta and V. Srinivas, Varieties in positive characteristic with trivial tangent bundle, Compositio Math. 64 (1987), 191-212. MR 916481 (89e:14014)
  • [14] F. Oort and K. Ueno, Principally polarized abelian varieties of dimension two or three are Jacobian varieties, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 20 (1973), 377-381. MR 0364265 (51:520)
  • [15] M. Rosen, Abelian varieties over C, Arithmetic Geometry (G. Cornell and J. H. Silverman, eds.), Springer-Verlag, New York, 1986, pp. 79-101. MR 861973
  • [16] H.-G. Rück, Abelian surfaces and Jacobian varieties over finite fields, Compositio Math. 76 (1990), 351-366. MR 1080007 (92e:14016)
  • [17] W. Scharlau, Quadratic and Hermitian forms, Grundlehren Math. Wiss., vol. 270, Springer-Verlag, Berlin, 1985. MR 770063 (86k:11022)
  • [18] J.-P. Serre, Local fields, Graduate Texts in Math., vol. 67, Springer-Verlag, New York, 1979. MR 554237 (82e:12016)
  • [19] J. Tate, Classes d'isogénie des variétés abéliennes sur un corps fini (d'après T. Honda), Séminaire Bourbaki 1968/69, Lecture Notes in Math., vol. 179, Springer-Verlag, Berlin, 1971, exposé 352, pp. 95-110.
  • [20] W. C. Waterhouse, Abelian varieties over finite fields, Ann. Sci. École Norm. Sup. (4) 2 (1969), 521-560. MR 0265369 (42:279)
  • [21] A. Weil, Zum Beweis des Torellischen Satzes, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. IIa 1957, 33-53. MR 0089483 (19:683e)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 11G25, 11G10, 14K15

Retrieve articles in all journals with MSC: 11G25, 11G10, 14K15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1995-1297531-4
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society