Sub-self-similar sets

Author:
K. J. Falconer

Journal:
Trans. Amer. Math. Soc. **347** (1995), 3121-3129

MSC:
Primary 28A80; Secondary 28A78

DOI:
https://doi.org/10.1090/S0002-9947-1995-1264809-X

MathSciNet review:
1264809

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A compact set is called sub-self-similar if , where the are similarity transfunctions. We consider various examples and constructions of such sets and obtain formulae for their Hausdorff and box dimensions, generalising those for self-similar sets.

**[1]**C. Bandt and S. Graf,*Self-similar sets*.*A characterization of self-similar fractals with positive Hausdorff measure*, Proc. Amer. Math. Soc.**114**(1992), 995-1001. MR**1100644 (93d:28014)****[2]**C. Bandt,*Self-similar sets*I.*Topological Markov chains and mixed self-similar sets*, Math. Nachr.**142**(1989), 107-123. MR**1017373 (90j:54038)****[3]**G. A. Edgar,*Measure, topology and fractal geometry*, Springer-Verlag, 1990. MR**1065392 (92a:54001)****[4]**K. J. Falconer,*The geometry of fractal sets*, Cambridge Univ. Press, 1985. MR**867284 (88d:28001)****[5]**-,*The Hausdorff dimension of self-affine fractals*, Math. Proc. Cambridge Phil. Soc.**103**(1989), 339-350. MR**923687 (89h:28010)****[6]**-,*Dimensions and measures of quasi-self-similar sets*, Proc. Amer. Math. Soc.**106**(1989), 543-554. MR**969315 (90c:58103)****[7]**-,*Fractal geometry--Mathematical foundations and applications*, Wiley, 1990.**[8]**J. E. Hutchinson,*Fractals and self-similarity*, Indiana Univ. Math. J.**30**(1981), 713-747. MR**625600 (82h:49026)****[9]**P. Mattila,*Geometry of sets and measures in Euclidean spaces*, Cambridge Univ. Press, 1995. MR**1333890 (96h:28006)****[10]**R. D. Mauldin and S. C. Williams,*Hausdorff dimensions in graph directed constructions*, Trans. Amer. Math. Soc.**309**(1988), 811-829. MR**961615 (89i:28003)****[11]**C. A. Rogers,*Hausdorff measures*, Cambridge Univ. Press, 1970. MR**0281862 (43:7576)****[12]**D. W. Spear,*Measure and self-similarity*, Adv. Math.**91**(1992), 143-157. MR**1149621 (92k:28013)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
28A80,
28A78

Retrieve articles in all journals with MSC: 28A80, 28A78

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1995-1264809-X

Article copyright:
© Copyright 1995
American Mathematical Society