Subselfsimilar sets
Author:
K. J. Falconer
Journal:
Trans. Amer. Math. Soc. 347 (1995), 31213129
MSC:
Primary 28A80; Secondary 28A78
MathSciNet review:
1264809
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: A compact set is called subselfsimilar if , where the are similarity transfunctions. We consider various examples and constructions of such sets and obtain formulae for their Hausdorff and box dimensions, generalising those for selfsimilar sets.
 [1]
Christoph
Bandt and Siegfried
Graf, Selfsimilar sets. VII. A
characterization of selfsimilar fractals with positive Hausdorff
measure, Proc. Amer. Math. Soc.
114 (1992), no. 4,
995–1001. MR 1100644
(93d:28014), http://dx.doi.org/10.1090/S00029939199211006443
 [2]
Christoph
Bandt, Selfsimilar sets. I. Topological Markov chains and mixed
selfsimilar sets, Math. Nachr. 142 (1989),
107–123. MR 1017373
(90j:54038), http://dx.doi.org/10.1002/mana.19891420107
 [3]
Gerald
A. Edgar, Measure, topology, and fractal geometry,
Undergraduate Texts in Mathematics, SpringerVerlag, New York, 1990. MR 1065392
(92a:54001)
 [4]
K.
J. Falconer, The geometry of fractal sets, Cambridge Tracts in
Mathematics, vol. 85, Cambridge University Press, Cambridge, 1986. MR 867284
(88d:28001)
 [5]
K.
J. Falconer, The Hausdorff dimension of selfaffine fractals,
Math. Proc. Cambridge Philos. Soc. 103 (1988), no. 2,
339–350. MR
923687 (89h:28010), http://dx.doi.org/10.1017/S0305004100064926
 [6]
K.
J. Falconer, Dimensions and measures of quasi
selfsimilar sets, Proc. Amer. Math. Soc.
106 (1989), no. 2,
543–554. MR
969315 (90c:58103), http://dx.doi.org/10.1090/S00029939198909693158
 [7]
, Fractal geometryMathematical foundations and applications, Wiley, 1990.
 [8]
John
E. Hutchinson, Fractals and selfsimilarity, Indiana Univ.
Math. J. 30 (1981), no. 5, 713–747. MR 625600
(82h:49026), http://dx.doi.org/10.1512/iumj.1981.30.30055
 [9]
Pertti
Mattila, Geometry of sets and measures in Euclidean spaces,
Cambridge Studies in Advanced Mathematics, vol. 44, Cambridge
University Press, Cambridge, 1995. Fractals and rectifiability. MR 1333890
(96h:28006)
 [10]
R.
Daniel Mauldin and S.
C. Williams, Hausdorff dimension in graph directed
constructions, Trans. Amer. Math. Soc.
309 (1988), no. 2,
811–829. MR
961615 (89i:28003), http://dx.doi.org/10.1090/S00029947198809616154
 [11]
C.
A. Rogers, Hausdorff measures, Cambridge University Press,
LondonNew York, 1970. MR 0281862
(43 #7576)
 [12]
Donald
W. Spear, Measures and selfsimilarity, Adv. Math.
91 (1992), no. 2, 143–157. MR 1149621
(92k:28013), http://dx.doi.org/10.1016/00018708(92)90014C
 [1]
 C. Bandt and S. Graf, Selfsimilar sets . A characterization of selfsimilar fractals with positive Hausdorff measure, Proc. Amer. Math. Soc. 114 (1992), 9951001. MR 1100644 (93d:28014)
 [2]
 C. Bandt, Selfsimilar sets I. Topological Markov chains and mixed selfsimilar sets, Math. Nachr. 142 (1989), 107123. MR 1017373 (90j:54038)
 [3]
 G. A. Edgar, Measure, topology and fractal geometry, SpringerVerlag, 1990. MR 1065392 (92a:54001)
 [4]
 K. J. Falconer, The geometry of fractal sets, Cambridge Univ. Press, 1985. MR 867284 (88d:28001)
 [5]
 , The Hausdorff dimension of selfaffine fractals, Math. Proc. Cambridge Phil. Soc. 103 (1989), 339350. MR 923687 (89h:28010)
 [6]
 , Dimensions and measures of quasiselfsimilar sets, Proc. Amer. Math. Soc. 106 (1989), 543554. MR 969315 (90c:58103)
 [7]
 , Fractal geometryMathematical foundations and applications, Wiley, 1990.
 [8]
 J. E. Hutchinson, Fractals and selfsimilarity, Indiana Univ. Math. J. 30 (1981), 713747. MR 625600 (82h:49026)
 [9]
 P. Mattila, Geometry of sets and measures in Euclidean spaces, Cambridge Univ. Press, 1995. MR 1333890 (96h:28006)
 [10]
 R. D. Mauldin and S. C. Williams, Hausdorff dimensions in graph directed constructions, Trans. Amer. Math. Soc. 309 (1988), 811829. MR 961615 (89i:28003)
 [11]
 C. A. Rogers, Hausdorff measures, Cambridge Univ. Press, 1970. MR 0281862 (43:7576)
 [12]
 D. W. Spear, Measure and selfsimilarity, Adv. Math. 91 (1992), 143157. MR 1149621 (92k:28013)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC:
28A80,
28A78
Retrieve articles in all journals
with MSC:
28A80,
28A78
Additional Information
DOI:
http://dx.doi.org/10.1090/S0002994719951264809X
PII:
S 00029947(1995)1264809X
Article copyright:
© Copyright 1995
American Mathematical Society
