Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



A new functional equation of Pexider type related to the complex exponential function

Authors: Hiroshi Haruki and Themistocles M. Rassias
Journal: Trans. Amer. Math. Soc. 347 (1995), 3111-3119
MSC: Primary 39B32; Secondary 30D05
MathSciNet review: 1273494
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The purpose of this paper is to solve a new functional equation, characteristic for the complex exponential function, which contains four unknown entire functions and to solve, as an application, three further functional equations.

References [Enhancements On Off] (What's this?)

  • [1] J. Aczél, Lectures on functional equations and their applications, Mathematics in Science and Engineering, Vol. 19, Academic Press, New York-London, 1966. Translated by Scripta Technica, Inc. Supplemented by the author. Edited by Hansjorg Oser. MR 0208210
  • [2] J. Aczél and J. Dhombres, Functional equations in several variables, Encyclopedia of Mathematics and its Applications, vol. 31, Cambridge University Press, Cambridge, 1989. With applications to mathematics, information theory and to the natural and social sciences. MR 1004465
  • [3] Einar Hille, Classical analysis and functional analysis: selected papers, The MIT Press, Cambridge, Mass.-London, 1975. Edited by Robert R. Kallman; Mathematicians of Our Time, Vol. 11. MR 0457122
  • [4] J. Aczél, Private communication.
  • [5] J. Aczél, On a generalization of the functional equations of Pexider, Publ. Inst. Math. (Beograd) (N.S.) 4 (18) (1964), 77–80. MR 0172020
  • [6] -, Review for [9], Zbl. 139 (1968), 97.
  • [7] Lars V. Ahlfors, Complex analysis, 3rd ed., McGraw-Hill Book Co., New York, 1978. An introduction to the theory of analytic functions of one complex variable; International Series in Pure and Applied Mathematics. MR 510197
  • [8] Robert B. Burckel, An introduction to classical complex analysis. Vol. 1, Pure and Applied Mathematics, vol. 82, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1979. MR 555733
  • [9] H. Haruki, Studies on certain functional equations from the standpoint of analytic function theory, Sci. Rep. Osaka Univ. 14 (1965), 1-40.
  • [10] Hiroshi Haruki, A famous definite integral, Math. Notae 24 (1974/75), 23–25. MR 0404901
  • [11] Hiroshi Haruki, On a functional equation of Pexider type, Aequationes Math. 36 (1988), no. 1, 1–19. MR 959790,
  • [12] Maurice Heins, Complex function theory, Pure and Applied Mathematics, Vol. 28, Academic Press, New York-London, 1968. MR 0239054
  • [13] E. Hille, A Pythagorean functional equation, Ann. of Math. 24 (1923), 175-180.
  • [14] -, A class of functional equations, Ann. of Math. 29 (1928), 215-222.
  • [15] John Klippert, Classroom Notes: A Note on an Analytic Logarithm, Amer. Math. Monthly 88 (1981), no. 5, 347. MR 1539685,
  • [16] Zeev Nehari, Introduction to complex analysis, Revised edition, Allyn and Bacon, Inc., Boston, Mass., 1968. MR 0224780
  • [17] Rolf Nevanlinna and V. Paatero, Introduction to complex analysis, Translated from the German by T. Kövari and G. S. Goodman, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969. MR 0239056
  • [18] A. M. Ostrowski, Über die Funktionalgleichung der Exponentialfunktion und verwandte Funktionalgleichungen, Jber. Deutsch. Math.-Verein 38 (1929), 54-62.
  • [19] R. M. Robinson, A curious trigonometric identity, Amer. Math. Monthly 64 (1957), 83–85. MR 0082549,
  • [20] Tsuneo Sato, On the functional equality |𝑓(𝑥+𝑖𝑦)|=|𝑓(𝑥)||𝑓(𝑖𝑦)|., J. College Arts Sci. Chiba Univ. 4 (1963/1964), no. 2, 9–10. MR 0185296

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 39B32, 30D05

Retrieve articles in all journals with MSC: 39B32, 30D05

Additional Information

Keywords: Complex exponential function, functional equation of Pexider type, Hille's functional equation, Robinson's functional equation
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society