Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Construction of homomorphisms of $ M$-continuous lattices


Author: Xiao Quan Xu
Journal: Trans. Amer. Math. Soc. 347 (1995), 3167-3175
MSC: Primary 06B35; Secondary 06B15, 06D05
DOI: https://doi.org/10.1090/S0002-9947-1995-1286011-8
MathSciNet review: 1286011
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We present a direct approach to constructing homomorphisms of $ M$-continuous lattices, a generalization of continuous lattices, into the unit interval, and show that an $ M$-continuous lattice has sufficiently many homomorphisms into the unit interval to separate the points.


References [Enhancements On Off] (What's this?)

  • [1] H.-J. Bandelt, $ M$-distributive lattices, Arch. Math. (Basel) 39 (1982), 436-442. MR 688696 (84f:06017)
  • [2] H.-J. Bandelt and M. Erné, The category of $ Z$-continuous posets, J. Pure Appl. Algebra 30 (1983), 219-226. MR 724033 (85f:06002)
  • [3] -, Representations and embeddings of $ M$-distributive lattices, Houston J. Math. 10 (1984), 315-324. MR 763234 (86m:06017)
  • [4] P. Bernays, A system of axiomatic set theory. III, J. Symbolic Logic 7 (1942), 65-89. MR 0006333 (3:290c)
  • [5] G. Bruns, Distributivität und subdirekte Zerlegbarkeit vollständiger Verbände, Arch. Math. (Basel) 12 (1961), 61-66. MR 0124247 (23:A1561)
  • [6] D. Drake and W. J. Thron, On the representations of an abstract lattice as the family of closed sets of a topological space, Trans. Amer. Math. Soc. 120 (1965), 57-71. MR 0188963 (32:6390)
  • [7] G. Gierz et al., A compendium of continuous lattices, Springer-Verlag, Berlin, 1980. MR 614752 (82h:06005)
  • [8] K. H. Hofmann and A. R. Stralka, The algebraic theory of Lawson semilattices--Applications of Galois connections to compact semilattices, Dissertationes Math./Rozprawy Mat. 137 (1976).
  • [9] J. D. Lawson, Topological semilattices, J. London Math. Soc. 2 (1969), 719-724. MR 0253301 (40:6516)
  • [10] A. Levy, Basic set theory, Springer-Verlag, Berlin, 1979. MR 533962 (80k:04001)
  • [11] D. Novak, Generalization of continuous posets, Trans. Amer. Math. Soc. 272 (1982), 645-667. MR 662058 (83i:06007)
  • [12] S. Papert, Which distributive lattices are lattices of closed sets?, Proc. Cambridge Philos. Soc. 55 (1959), 172-176. MR 0104601 (21:3354)
  • [13] G. N. Raney, A subdirect-union representation for completely distributive complete lattices, Proc. Amer. Math. Soc. 4 (1953), 518-522. MR 0058568 (15:389e)
  • [14] -, Tight Galois connections and complete distributivity, Trans. Amer. Math. Soc. 97 (1960), 418-426. MR 0120171 (22:10928)
  • [15] D. S. Scott, Outline of a mathematical theory of computation, Proc. 4th Annual Princeton Conf. Information Science and Systems, Princeton Univ. Press, Princeton, NJ, 1970, pp. 169-176.
  • [16] -, Continuous lattices, Toposes, Algebraic Geometry and Logic, Lecture Notes in Math., vol. 274, Springer-Verlag, Berlin, 1972, pp. 97-136. MR 0404073 (53:7879)
  • [17] W. J. Thron, Lattice equivalence of topological spaces, Duke Math. J. 29 (1962), 671-680. MR 0146787 (26:4307)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 06B35, 06B15, 06D05

Retrieve articles in all journals with MSC: 06B35, 06B15, 06D05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1995-1286011-8
Keywords: $ M$-continuity, $ M$-distributivity, $ M$-below relation, embedding
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society