Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The structure of the reverse Hölder classes


Authors: David Cruz-Uribe and C. J. Neugebauer
Journal: Trans. Amer. Math. Soc. 347 (1995), 2941-2960
MSC: Primary 42B25; Secondary 46E15
DOI: https://doi.org/10.1090/S0002-9947-1995-1308005-6
MathSciNet review: 1308005
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we study the structure of the class of functions $ (R{H_s})$ which satisfy the reverse Hölder inequality with exponent $ s > 1$. To do so we introduce a new operator, the minimal operator, which is analogous to the Hardy-Littlewood maximal operator, and a new class of functions, $ (R{H_\infty })$, which plays the same role for $ (R{H_s})$ that the class $ ({A_1})$ does for the $ ({A_p})$ classes.


References [Enhancements On Off] (What's this?)

  • [1] K. F. Andersen and W. S. Young, On the reverse weak type inequality for the Hardy maximal function and the weighted classes $ L{(\log L)^k}$, Pacific J. Math. 112 (1984), 257-264. MR 743983 (85k:42044)
  • [2] C. Bennett, R. A. DeVore, and R. Sharpley, Weak $ {L^\infty }$ and BMO, Ann. of Math. 113 (1981), 601-611. MR 621018 (82h:46047)
  • [3] F. Chiarenza and M. Frasca, Morrey spaces and Hardy-Littlewood maximal function, Rend. Mat. Appl. (7) 7 (1981), 273-279. MR 985999 (90f:42017)
  • [4] D. Cruz-Uribe, SFO, Piecewise monotonic doubling measures, Rocky Mountain J. Math, (to appear). MR 1406495 (97k:42017)
  • [5] -, The class $ L\log L$ with weights, The Madison Symposium on Complex Analysis, Contemp. Math., vol. 137, Amer. Math. Soc., Providence, RI, 1992.
  • [6] D. Cruz-Uribe, SFO, C. J. Neugebauer and V. Olesen, Norm inequalities for the minimal and maximal operator, and differentiation of the integral, preprint. MR 1485505 (99b:42022)
  • [7] R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241-250. MR 0358205 (50:10670)
  • [8] R. Coifman and R. Rochberg, Another characterization of BMO, Proc. Amer. Math. Soc. 79 (1980), 249-254. MR 565349 (81b:42067)
  • [9] B. Franchi, Weighted Sobolev-Poincare inequalities and pointwise estimates for a class of degenerate ellliptic equations, Trans. Amer. Math. Soc. 327 (1991), 125-158. MR 1040042 (91m:35095)
  • [10] J. Garcia-Cuerva and J. L. Rubio de Francia, Weighted norm inequalities and related topics, North-Holland Math. Stud., vol. 116, North-Holland, Amsterdam, 1985. MR 807149 (87d:42023)
  • [11] F. W. Gehring, The $ {L^p}$-integrability of the partial derivatives of a quasiconformal mapping, Acta Math. 130 (1973), 265-277. MR 0402038 (53:5861)
  • [12] M. Giaquinta, Multiple integrals in the calculus of variations and nonlinear elliptic systems, Ann.of Math. Stud., no. 105, Princeton University Press, Princeton, NJ, 1983. MR 717034 (86b:49003)
  • [13] M. Giaquinta and G. Modica, Regularity results for some classes of higher order nonlinear elliptic systems, J. Reine Angew. Math. 311/312 (1979), 145-169. MR 549962 (81a:35035)
  • [14] R. Johnson, Changes of variable and $ ({A_p})$ weights, Harmonic Analysis and Partial Differential Equations, Contemp. Math., vol. 107, Amer. Math. Soc., Providence, RI, 1990, pp. 93-99. MR 1066472 (91f:42017)
  • [15] R. Johnson and C. J. Neugebauer, Homeomorphisms preserving $ ({A_p})$, Rev. Mat. Iberoamericana 3 (1987), 249-273. MR 990859 (90d:42013)
  • [16] -, Change of variable results for $ ({A_p})$-and reverse Hölder $ R{H_r}$-classes, Trans. Amer. Math. Soc. 328 (1991), 639-666.
  • [17] J. L. Journé, Zygmund operators, pseudo-differential operators and the Cauchy integral of Calderon, Lecture Notes in Math., vol. 994, Springer-Verlag, New York, 1983.
  • [18] B. Muckenhoupt, Weighted reverse weak type inequalities for the Hardy-Littlewood maximal function, Pacific J. Math. 117 (1985), 371-377. MR 779926 (86j:42025)
  • [19] E. Sawyer, Two weight norm inequalities for certain maximal and integral operators, Lecture Notes in Math., vol. 908, Springer-Verlag, New York, 1982, pp. 102-127. MR 654182 (83k:42020b)
  • [20] E. Stredulinsky, Weighted inequalities and degenerate elliptic partial differential equations, Lecture Notes in Math., vol. 1074, Springer-Verlag, Berlin, 1984. MR 757718 (86f:35090)
  • [21] J. O. Strömberg and A. Torchinsky, Weighted Hardy spaces, Lecture Notes in Math., vol. 1381, Springer-Verlag, Berlin, 1989. MR 1011673 (90j:42053)
  • [22] J. O. Strömberg and R. L. Wheeden, Fractional integrals on weighted $ {H^p}$ and $ {L^p}$ spaces, Trans. Amer. Math. Soc. 287 (1985), 293-321. MR 766221 (86f:42016)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 42B25, 46E15

Retrieve articles in all journals with MSC: 42B25, 46E15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1995-1308005-6
Keywords: $ ({A_p})$ weights, reverse Hölder inequality, minimal function
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society