Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The $ 7$-connected cobordism ring at $ p=3$


Authors: Mark A. Hovey and Douglas C. Ravenel
Journal: Trans. Amer. Math. Soc. 347 (1995), 3473-3502
MSC: Primary 55N22; Secondary 55P42, 55T15
DOI: https://doi.org/10.1090/S0002-9947-1995-1297530-2
MathSciNet review: 1297530
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we study the cobordism spectrum $ MO\left\langle 8 \right\rangle $ at the prime $ 3$. This spectrum is important because it is conjectured to play the role for elliptic cohomology that Spin cobordism plays for real $ K$-theory. We show that the torsion is all killed by $ 3$, and that the Adams-Novikov spectral sequence collapses after only $ 2$ differentials. Many of our methods apply more generally.


References [Enhancements On Off] (What's this?)

  • [AM] J. F. Adams and H. Margolis, Modules over the Steenrod algebra, Topology 10 (1971), 271-282. MR 0294450 (45:3520)
  • [BM] A. Bahri and M. Mahowald, Stiefel-Whitney classes in $ {H^ * }BO\left\langle {\phi (r)} \right\rangle $, Proc. Amer. Math. Soc. 83 (1981), 653-655. MR 627713 (82k:55017)
  • [Br] R. Bruner, Ext in the nineties, Algebraic Topology (Oaxtepec, 1991), Contemp. Math., vol. 146, Amer. Math. Soc., Providence, RI, 1993, pp. 71-90. MR 1224908 (94a:55011)
  • [Bot] B. Botvinnik, The structure of the ring $ MS{U_ * }$, Math. USSR-Sb. 69 (1991), 581-596. MR 1055528 (91e:57058)
  • [Bou] A. K. Bousfield, The localization of spectra with respect to homology theories, Topology 18 (1979), 257-281. MR 551009 (80m:55006)
  • [BMMS] R. R. Bruner, J. P. May, J. E. McClure, and M. Steinberger, $ {H_\infty }$ Ring spectra and their applications, Lecture Notes in Math., vol. 1176, Springer-Verlag, New York, 1986. MR 836132 (88e:55001)
  • [CF] P. E. Conner and E. E. Floyd, Torsion in SU-bordism, Mem. Amer. Math. Soc. 60 (1966). MR 0189044 (32:6471)
  • [DHS] E. Devinatz, M. Hopkins, and J. Smith, Nilpotence and stable homotopy theory I, Ann. of Math. 128 (1988), 207-242. MR 960945 (89m:55009)
  • [DM] D. Davis and M. Mahowald, $ {\upsilon _1}$-and $ {\upsilon _2}$-periodicity in stable homotopy theory, Amer. J. Math. 103 (1981), 615-659. MR 623131 (82j:55017)
  • [Giam] V. Giambalvo, The mod $ p$ cohomology of $ BO\left\langle {4k} \right\rangle $, Proc. Amer. Math. Soc. 20 (1969), 593-597. MR 0236913 (38:5206)
  • [GM] V. Gorbunov and M. Mahowald, Some homotopy of the cobordism spectrum $ MO\left\langle 8 \right\rangle $, preprint (1993).
  • [HM] M. Hopkins and H. Miller, Enriched multiplication on the cohomology theory $ {E_n}$, to appear.
  • [Hov] M. Hovey, $ {\upsilon _n}$-elements in ring spectra and applications to bordism theory, preprint (1993).
  • [Hovl] -, Bousfield localization functors and Hopkins' chromatic splitting conjecture, to appear in the Proceedings of the Cech Centennial Conference on Homotopy Theory.
  • [LMM] L. G. Lewis, Jr., J. P. May, and M. Steinberger, Equivariant stable homotopy theory, Lecture Notes in Math., vol. 1213, Springer-Verlag, New York, 1986. MR 866482 (88e:55002)
  • [MS] M. Mahowald and H. Sadofsky, $ {\upsilon _n}$-telescopes and the Adams spectral sequence, preprint (1992).
  • [Mar] H. R. Margolis, Spectra and the Steenrod algebra, North-Holland, Amsterdam, 1983. MR 738973 (86j:55001)
  • [May] J. P. May, A general algebraic approach to Steenrod operations, The Steenrod Algebra and Its Applications, Lecture Notes in Math., vol. 168, Springer-Verlag, New York, 1970, pp. 153-231. MR 0281196 (43:6915)
  • [MW] H. Miller and C. Wilkerson, Vanishing lines for modules over the Steenrod algebra, J. Pure Appl. Algebra 22 (1981), 293-307. MR 629336 (82m:55024)
  • [Mit] S. Mitchell, Finite complexes with $ A(n)$-free cohomology, Topology 24 (1985), 227-248. MR 793186 (86k:55007)
  • [MP] J. Moore and F. Peterson, Modules over the Steenrod algebra, Topology 11 (1972), 387-395. MR 0377880 (51:14049)
  • [Nov] S. P. Novikov, The methods of algebraic topology from the viewpoint of cobordism theories, (in Russian) Izv. Akad. Nauk SSR Ser. Mat. 31 (1967), 855-951; translation, Math. USSR-Izv. (1967), 827-913. MR 0221509 (36:4561)
  • [Pen] D. Pengelley, The homotopy type of MSU, Amer. J. Math. 104 (1982), 1101-1123. MR 675311 (84k:55016)
  • [Rav] D. C. Ravenel, Complex cobordism and stable homotopy groups of spheres, Academic Press, Orlando, 1986. MR 860042 (87j:55003)
  • [RW] D. C. Ravenel and W. S. Wilson, The Hopf ring for complex cobordism, J. Pure Appl. Algebra 9 (1977), 241-280. MR 0448337 (56:6644)
  • [Ros] S. Rosen, On torsion in connective cobordism, Ph. D. thesis, Northwestern University, 1972.
  • [Sin] W. Singer, Connective fiberings over BU and U, Topology 7 (1968), 271-303. MR 0232392 (38:717)
  • [Sm] J. H. Smith, Finite complexes with vanishing lines of small slope, preprint (1992). MR 1209114 (94a:20044)
  • [St] R. Stong, Determination of $ {H^ * }(BO(k, \ldots ,\infty );{{\mathbf{Z}}_2})$ and $ {H^ * }(BU(k, \ldots ,\infty );{{\mathbf{Z}}_2})$, Trans. Amer. Math. Soc. 107 (1963), 526-544. MR 0151963 (27:1944)
  • [Ver] V. Vershinin, Cobordisms and spectral sequences, Transl. Math. Mono., Amer. Math. Soc., vol. 130, Providence, RI, 1993. MR 1247708 (94j:55006)
  • [Wil] W. S. Wilson, The $ \Omega $-spectrum for Brown-Peterson cohomology, II, Amer. J. Math. 97 (1975), 101-123. MR 0383390 (52:4271)
  • [Wit] E. Witten, The index of the Dirac operator in loop space, Lecture Notes in Math., vol. 1326, Springer-Verlag, 1988, pp. 161-181. MR 970288

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 55N22, 55P42, 55T15

Retrieve articles in all journals with MSC: 55N22, 55P42, 55T15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1995-1297530-2
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society