Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The zero-sets of the radial-limit functions of inner functions


Authors: Charles L. Belna, Robert D. Berman, Peter Colwell and George Piranian
Journal: Trans. Amer. Math. Soc. 347 (1995), 3605-3612
MSC: Primary 30D40; Secondary 30D50
DOI: https://doi.org/10.1090/S0002-9947-1995-1308000-7
MathSciNet review: 1308000
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A set $ E$ on the unit circle is the zero-set of the radial-limit function of some inner function if and only if $ E$ is a countable intersection of $ {F_\sigma }$-sets of measure 0.


References [Enhancements On Off] (What's this?)

  • [B] R. D. Berman, The sets of fixed radial limit value for inner functions, Illinois J. Math. 29 (1985), 191-219. MR 784519 (86j:30046)
  • [BN] R. D. Berman and T. Nishiura, Some mapping properties of the radial-limit function of an inner function, J. London Math. Soc. (to appear). MR 1356149 (96m:30050)
  • [C] G. T. Cargo, Some topological analogues of the F. and M. Riesz uniqueness theorem, J. London Math. Soc. (2) 12 (1975/76), 64-74. MR 0390223 (52:11049)
  • [CL] E. F. Collingwood and A. J. Lohwater, The theory of cluster sets, University Press, Cambridge, 1966. MR 0231999 (38:325)
  • [F] P. Fatou, Séries trigonométriques et séries de Taylor, Acta Math. 30 (1906), 335-400. MR 1555035
  • [LP] A. J. Lohwater and G. Piranian, The boundary behavior of functions analytic in a disk, Ann. Acad. Sci. Fenn. Ser. Math. 239 (1957). MR 0091342 (19:950c)
  • [P] I. I. Priwalow, Randeigenschaften analytischer Funktionen, VEB Deutscher Verlag der Wissenschaften, Berlin, 1956. MR 0083565 (18:727f)
  • [RR] F. Riesz and M. Riesz, Über die Randwerte einer analytischen Funktion, Quatrième Congrès des Math. Scand., 1916, pp. 27-44.
  • [S] W. Sierpiński, Sur une classification des ensembles mesurables (B), Fund. Math. 10 (1927), 320-327.
  • [Z] A. Zygmund, Trigonometric series, 2nd ed., Cambridge University Press, London and New York, 1968. MR 0236587 (38:4882)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 30D40, 30D50

Retrieve articles in all journals with MSC: 30D40, 30D50


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1995-1308000-7
Keywords: Inner functions, radial-limit functions, zero sets
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society