Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A note on singularities in semilinear problems


Authors: Mohammed Guedda and Mokhtar Kirane
Journal: Trans. Amer. Math. Soc. 347 (1995), 3595-3603
MSC: Primary 35A20; Secondary 35J60
DOI: https://doi.org/10.1090/S0002-9947-1995-1308012-3
MathSciNet review: 1308012
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the equation $ \Delta u - \frac{1} {2}x.\Delta u - \frac{u} {{q - 1}} + {u^q} = 0,{\text{for}}q > 1$. We study the isolated singularities and present a nonlinear technique, and give a complete classification.


References [Enhancements On Off] (What's this?)

  • [1] M. F. Bidaut-Veron, Local and global behaviour of solutions of quasilinear equations of Emden-Fowler equations type, Arch. Rational Mech. Anal. 107 (1989), 293-324. MR 1004713 (90f:35066)
  • [2] H. Brezis and P. L. Lions, A note on isolated singularities for linear elliptic equations, J. Math. Anal. Appl. 7A (1981), 263-266. MR 634242 (83e:35039)
  • [3] R. Emden, Gaskugeln, Anwendungen der mechanischen Warmentheorie auf Kosmologie und meteorologische Probleme, Chap. XII, Teubner, Leipzig, 1907.
  • [4] M. Escobedo and O. Kavian, Variational problems related to self-similar solutions of the heat equation, Nonlinear Anal., Theory, Methods Appl. 11 (1987), 1103-1133. MR 913672 (90a:35128)
  • [5] R. H. Fowler, The form near infinity of real continuous solutions of a certain differential equation of second order, Quart. J. Math. 45 (1914), 289-350.
  • [6] -, The solutions of Emden's and similar differential equations, Monthly Notices Roy. Astronom. Soc. 91 (1920), 63-91.
  • [7] -, Further studies on Emden's and similar differential equations, Quart J. Math. 2 (1931), 259-288.
  • [8] A. Friedman, Remarks on nonlinear parabolic equations, Applications of Nonlinear Partial Differential Equations in Mathematical Physics, Amer. Math. Soc., Providence, RI, 1965, pp. 3-23. MR 0186938 (32:4393)
  • [9] A. Friedman and J. B. McLeod, Blow-up of positive solutions of semilinear heat equations, Indiana Univ. Math. J. 34 (1985), 425-447. MR 783924 (86j:35089)
  • [10] A. Friedman, Blow-up of solutions of non linear parabolic equations, Nonlinear Diffusion Equations and their Equilibrium States, vol. 1 (W.-H. Ni et al., eds), Springer-Verlag, 1988, pp. 301-318. MR 956073 (89m:35106)
  • [11] H. Fujita, On the blowing up of solutions to the Cauchy problem for $ {u_t} = \Delta u + {u^{1 + \alpha }}$, J. Fac. Sci. Univ. Tokyo Sect. IA 13 (1966), 109-124. MR 0214914 (35:5761)
  • [12] V. A. Galaktionov, S. P. Kurdymov and A. A. Samarskii, Asymptotic stability of invariant solutions of nonlinear heat-condiction equations with sources, translation of Differentsial'nye Uravneniya 20 (1981), 461-476.
  • [13] V. A. Galaktionov, Proof of the localization of unbounded solutions of the nonlinear parabolic equation, Differentsial'nye Uravneniya 21 (1985), 15-23. MR 777775 (86d:35068)
  • [14] B. Gidas and J. Spruck, Global and local behaviour of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math. 34 (1981), 525-598. MR 615628 (83f:35045)
  • [15] Y. Giga and R. V. Kohn, Asymptotically self-similar blow-up for semilinear heat equations, Comm. Pure Appl. Math. 38 (1985), 297-319. MR 784476 (86k:35065)
  • [16] -, Characterizing blowup using similarity variables, Indiana Univ. Math. J. 36 (1987), 1-40. MR 876989 (88c:35021)
  • [17] A. Gmira, Comportements asymptotiques et singularités des solutions de problèmes quasilinéaires, Doctorat d'Etat, Université de Tours, 1989.
  • [18] M. Guedda and L. Veron, Local and global properties of solutions of quasilinear equations, J. Differential Equations 76 (1988), 159-189. MR 964617 (89k:35078)
  • [19] M. Guedda, Propriétés locales et globales des solutions d'équations quasilinéaires elliptiques, Ph.D. thesis, Université de Tours, 1987.
  • [20] R. Hadiji and M. Guedda, Some remarks on Sobolev inequality (to appear).
  • [21] S. Kaplan, On the growth of solutions of quasilinear parabolic equations, Comm. Pure Appl. Math. 16 (1963), 305-330. MR 0160044 (28:3258)
  • [22] P. L. Lions, Isolated singularities in semilinear problems, J. Differential Equations 38 (1980), 441-450. MR 605060 (82g:35040)
  • [23] J. Serrin, Local behaviour of solutions of quasilinear equations, Acta Math. 111 (1964), 247-302. MR 0170096 (30:337)
  • [24] -, Isolated singularities of solutions of quasilinear equations, Acta Math. 113 (1965), 219-240. MR 0176219 (31:494)
  • [25] L. Veron, Singularities of some quasilinear equations, Nonlinear Diffusion Equations and their Equilibrium States (W. M. Ni, L. A. Peletier, and J. Serrin, eds.), M.S.R.I. Publ., Springer-Verlag, New York and Berlin, 1988. MR 956097 (89m:35075)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 35A20, 35J60

Retrieve articles in all journals with MSC: 35A20, 35J60


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1995-1308012-3
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society