Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

A note on singularities in semilinear problems


Authors: Mohammed Guedda and Mokhtar Kirane
Journal: Trans. Amer. Math. Soc. 347 (1995), 3595-3603
MSC: Primary 35A20; Secondary 35J60
MathSciNet review: 1308012
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the equation $ \Delta u - \frac{1} {2}x.\Delta u - \frac{u} {{q - 1}} + {u^q} = 0,{\text{for}}q > 1$. We study the isolated singularities and present a nonlinear technique, and give a complete classification.


References [Enhancements On Off] (What's this?)

  • [1] Marie-Françoise Bidaut-Véron, Local and global behavior of solutions of quasilinear equations of Emden-Fowler type, Arch. Rational Mech. Anal. 107 (1989), no. 4, 293–324. MR 1004713, 10.1007/BF00251552
  • [2] Haïm Brézis and Pierre-Louis Lions, A note on isolated singularities for linear elliptic equations, Mathematical analysis and applications, Part A, Adv. in Math. Suppl. Stud., vol. 7, Academic Press, New York-London, 1981, pp. 263–266. MR 634242
  • [3] R. Emden, Gaskugeln, Anwendungen der mechanischen Warmentheorie auf Kosmologie und meteorologische Probleme, Chap. XII, Teubner, Leipzig, 1907.
  • [4] M. Escobedo and O. Kavian, Variational problems related to self-similar solutions of the heat equation, Nonlinear Anal. 11 (1987), no. 10, 1103–1133. MR 913672, 10.1016/0362-546X(87)90001-0
  • [5] R. H. Fowler, The form near infinity of real continuous solutions of a certain differential equation of second order, Quart. J. Math. 45 (1914), 289-350.
  • [6] -, The solutions of Emden's and similar differential equations, Monthly Notices Roy. Astronom. Soc. 91 (1920), 63-91.
  • [7] -, Further studies on Emden's and similar differential equations, Quart J. Math. 2 (1931), 259-288.
  • [8] Avner Friedman, Remarks on nonlinear parabolic equations, Proc. Sympos. Appl. Math., Vol. XVII, Amer. Math. Soc., Providence, R.I., 1965, pp. 3–23. MR 0186938
  • [9] Avner Friedman and Bryce McLeod, Blow-up of positive solutions of semilinear heat equations, Indiana Univ. Math. J. 34 (1985), no. 2, 425–447. MR 783924, 10.1512/iumj.1985.34.34025
  • [10] Avner Friedman, Blow-up of solutions of nonlinear parabolic equations, Nonlinear diffusion equations and their equilibrium states, I (Berkeley, CA, 1986) Math. Sci. Res. Inst. Publ., vol. 12, Springer, New York, 1988, pp. 301–318. MR 956073, 10.1007/978-1-4613-9605-5_19
  • [11] Hiroshi Fujita, On the blowing up of solutions of the Cauchy problem for 𝑢_{𝑡}=Δ𝑢+𝑢^{1+𝛼}, J. Fac. Sci. Univ. Tokyo Sect. I 13 (1966), 109–124 (1966). MR 0214914
  • [12] V. A. Galaktionov, S. P. Kurdymov and A. A. Samarskii, Asymptotic stability of invariant solutions of nonlinear heat-condiction equations with sources, translation of Differentsial'nye Uravneniya 20 (1981), 461-476.
  • [13] V. A. Galaktionov, A proof of the localization of unbounded solutions of the nonlinear parabolic equation 𝑢_{𝑡}=(𝑢^{𝜎}𝑢ₓ)ₓ+𝑢^{𝛽}, Differentsial′nye Uravneniya 21 (1985), no. 1, 15–23, 179–180 (Russian). MR 777775
  • [14] B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math. 34 (1981), no. 4, 525–598. MR 615628, 10.1002/cpa.3160340406
  • [15] Yoshikazu Giga and Robert V. Kohn, Asymptotically self-similar blow-up of semilinear heat equations, Comm. Pure Appl. Math. 38 (1985), no. 3, 297–319. MR 784476, 10.1002/cpa.3160380304
  • [16] Yoshikazu Giga and Robert V. Kohn, Characterizing blowup using similarity variables, Indiana Univ. Math. J. 36 (1987), no. 1, 1–40. MR 876989, 10.1512/iumj.1987.36.36001
  • [17] A. Gmira, Comportements asymptotiques et singularités des solutions de problèmes quasilinéaires, Doctorat d'Etat, Université de Tours, 1989.
  • [18] Mohammed Guedda and Laurent Véron, Local and global properties of solutions of quasilinear elliptic equations, J. Differential Equations 76 (1988), no. 1, 159–189. MR 964617, 10.1016/0022-0396(88)90068-X
  • [19] M. Guedda, Propriétés locales et globales des solutions d'équations quasilinéaires elliptiques, Ph.D. thesis, Université de Tours, 1987.
  • [20] R. Hadiji and M. Guedda, Some remarks on Sobolev inequality (to appear).
  • [21] Stanley Kaplan, On the growth of solutions of quasi-linear parabolic equations, Comm. Pure Appl. Math. 16 (1963), 305–330. MR 0160044
  • [22] P.-L. Lions, Isolated singularities in semilinear problems, J. Differential Equations 38 (1980), no. 3, 441–450. MR 605060, 10.1016/0022-0396(80)90018-2
  • [23] James Serrin, Local behavior of solutions of quasi-linear equations, Acta Math. 111 (1964), 247–302. MR 0170096
  • [24] James Serrin, Isolated singularities of solutions of quasi-linear equations, Acta Math. 113 (1965), 219–240. MR 0176219
  • [25] Laurent Véron, Singularities of some quasilinear equations, Nonlinear diffusion equations and their equilibrium states, II (Berkeley, CA, 1986) Math. Sci. Res. Inst. Publ., vol. 13, Springer, New York, 1988, pp. 333–365. MR 956097, 10.1007/978-1-4613-9608-6_20

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 35A20, 35J60

Retrieve articles in all journals with MSC: 35A20, 35J60


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1995-1308012-3
Article copyright: © Copyright 1995 American Mathematical Society