ELLIPITIC EQUATIONS OF ORDER $2m$ IN ANNULAR DOMAINS

ROBERT DALMASSO

ABSTRACT. In this paper we study the existence of positive radial solutions for some semilinear elliptic problems of order $2m$ in an annulus with Dirichlet boundary conditions. We consider a nonlinearity which is either sublinear or the sum of a sublinear and a superlinear term.

1. Introduction

Let $\Omega(a, b)$ denote the annulus $\{x \in \mathbb{R}^n; a < |x| < b\}, 0 < a < b < \infty, n \geq 2$, and consider the semilinear elliptic problems

\begin{equation}
(-1)^m \Delta^m u = g(|x|)f(u) \quad \text{in} \quad \Omega(a, b)
\end{equation}

and

\begin{equation}
(-1)^m \Delta^m u = \lambda g(|x|)f(u) + k(|x|)h(u) \quad \text{in} \quad \Omega(a, b)
\end{equation}

with the boundary conditions

\begin{equation}
\frac{\partial u}{\partial \nu} = \cdots = \frac{\partial^{m-1} u}{\partial \nu^{m-1}} = 0 \quad \text{on} \quad \partial \Omega(a, b)
\end{equation}

where $\lambda > 0$ is a parameter, $\frac{\partial}{\partial \nu}$ is the outward normal derivative, m is a positive integer and f, g, h, k satisfy at least the following assumptions:

(H1) $f, h : [0, \infty) \to [0, \infty)$ are continuous functions;

(H2) $g, k : [a, b] \to [0, \infty)$ are continuous functions such that $g, k \neq 0$ in $[a, b]$.

When $m = 1$ the existence of a positive radial solution of problem (1.1), (1.3) has been intensively studied in the case where f is superlinear at 0 and ∞ (see e.g. [2]-[4], [6], [11], [13]). The approach used in most papers was the shooting method. In contrast the result of [2] was obtained by a variational approach and the use of a priori estimates. The case $m \geq 1$ was treated in [8] and [9] using a priori estimates and well-known properties of compact mappings taking a cone in a Banach space into itself (see [10]).

When $m = 1$ and f is sublinear at 0 and ∞ problem (1.1), (1.3) possesses at least one positive radial solution. This case was studied in [11] and [15] using the shooting method and the fixed point theorem in cones respectively.

Received by the editors July 12, 1994.

1991 Mathematics Subject Classification. Primary 35J40; Secondary 34B27.

Key words and phrases. Semilinear elliptic equations, Green’s function, fixed point theorems.

©1995 American Mathematical Society
Finally, when \(m = 1 \), \(g = k = 1 \), \(\lambda > 0 \), \(f(u) = u^q \), \(0 < q < 1 \), and \(h(u) = u^p \), \(p > 1 \), equation (1.2) in a smooth bounded domain with Dirichlet boundary condition was recently studied in [1]. Some results extend to the case where \(f \) is concave and behaves like \(u^q \), \(0 < q < 1 \) near \(u = 0 \). Also if \(1 < p < \frac{n+2}{n-2} \), \(u^p \) can be replaced by a function \(h \) with the same behavior near \(u = 0 \) and near \(u = \infty \).

In this paper we first prove an existence result for problem (1.1), (1.3) when \(f \) is sublinear at 0 and \(\infty \). We do not require any monotonicity assumptions on \(f \). Then we consider problem (1.2), (1.3) when \(f \) is sublinear at 0 and \(h \) is superlinear at 0 and possibly at \(\infty \). For this problem we also assume that \(f \) is nondecreasing.

Our main results are the following two theorems.

Theorem 1.1. Let \(f \) satisfy (H1) and let \(g \) satisfy (H2). Assume moreover that the following condition holds:

\[
(H_3) \quad \lim_{u \to 0} \frac{f(u)}{u} = \infty \quad \text{and} \quad \lim_{u \to \infty} \frac{f(u)}{u} = 0.
\]

Then problem (1.1), (1.3) has at least one positive radial solution in \(C^{2m}(\Omega(a, b)) \).

Theorem 1.2. Let \(f, h \) satisfy (H1) and let \(g, k \) satisfy (H2). Assume moreover that the following conditions hold:

\[
(H_4) \quad \lim_{u \to 0} \frac{h(u)}{u} = 0;
\]

\[
(H_5) \quad \lim_{u \to 0} \frac{f(u)}{u} = \infty;
\]

\[
(H_6) \quad f \text{ is nondecreasing.}
\]

Then there exists \(\lambda_0 > 0 \) such that for all \(\lambda \in (0, \lambda_0) \) problem (1.2), (1.3) has at least one positive radial solution in \(C^{2m}(\Omega(a, b)) \).

Since we are interested in positive radial solutions, problems (1.1), (1.3) and (1.2), (1.3) reduce to the one-dimensional boundary value problems

\[
(1.4) \quad (-1)^m \Delta^m u(t) = g(t)f(u(t)), \quad t \in (a, b),
\]

and

\[
(1.5) \quad (-1)^m \Delta^m u(t) = \lambda g(t)f(u(t)) + k(t)h(u(t)), \quad t \in (a, b),
\]

with the boundary conditions

\[
(1.6) \quad u^{(j)}(a) = u^{(j)}(b) = 0, \quad j = 0, \ldots, m-1,
\]

where \(\Delta \) denotes the polar form of the Laplacian, i.e.:

\[
\Delta = t^{1-n} \frac{d}{dt} \left(t^{n-1} \frac{d}{dt} \right).
\]

The proofs make use of some precise estimates for the Green's function of the corresponding linear two-point boundary value problem. The other tools are a fixed point theorem in cones and the Schauder fixed point theorem.

In Section 2 we give some simple inequalities of the Green's function. Various results concerning disconjugate operators are needed. We also give a priori bounds for positive solutions of problem (1.5), (1.6) when \(h \) is superlinear at
In Section 3 we prove Theorem 1.1. In Section 4 we prove Theorem 1.2 and we give a bound for λ_0 when in addition h is superlinear at ∞.

2. Preliminaries

The homogeneous Dirichlet problem

$$\begin{cases}
\Delta^m v = 0 & \text{in } [a, b], \\
v^{(j)}(a) = v^{(j)}(b) = 0, & j = 0, \ldots, m - 1,
\end{cases}$$

has only the trivial solution. Then it is well-known (see e.g. [14], p. 29) that the operator $(-1)^m \Delta^m$ with Dirichlet boundary conditions has one and only one Green's function $G_m(t, s)$.

Theorem 2.1. $G_m(t, s) > 0$ for $a < t, s < b$.

Proof. Since $(-1)^m \Delta^m$ is a disconjugate operator on $[a, b]$, this is an immediate consequence of a theorem obtained in [7] (Theorem 11 on p. 108).

As we shall see in section 3 our next result provides very useful estimates for the norm of the integral operator associated with problem (1.4), (1.6).

Theorem 2.2. (i) There exists a positive constant C_m such that

$$0 < G_m(t, s) < C_m(s - a)^m(b - s)^m, \quad a < t, s < b.$$

(ii) For any $\delta \in (0, (b - a)/2)$ there exists $\eta \in (0, 1)$ such that

$$G_m(t, s) > \eta C_m(s - a)^m(b - s)^m, \quad a < s < b \quad \text{and} \quad a + \delta < t < b - \delta.$$

In order to prove Theorem 2.2 we shall need some results obtained in [5].

Denote by Δ^* the adjoint of Δ.

Let $v, v^*, w, w^* \in C^{2m}([a, b])$ be defined by the following relations:

Equation (2.1)

$$\begin{cases}
\Delta^m v = (\Delta^*)^m v^* = 0 & \text{in } [a, b], \\
v^{(j)}(a) = v^{(j)}(b) = 0, & j = 0, \ldots, m - 1, \\
v^{(j)}(b) = v^{(j)}(a) = 0, & j = 0, \ldots, m - 2 \text{ (if } m \geq 2), \\
v^{(m-1)}(b) = (-1)^{m-1}, & v^{(m-1)}(a) = 1,
\end{cases}$$

and

Equation (2.2)

$$\begin{cases}
\Delta^m w = (\Delta^*)^m w^* = 0, & \text{in } [a, b], \\
w^{(j)}(a) = w^{(j)}(b) = 0, & j = 0, \ldots, m - 2 \text{ (if } m \geq 2), \\
w^{(j)}(b) = w^{(j)}(a) = 0, & j = 0, \ldots, m - 1, \\
w^{(m-1)}(a) = 1, & w^{(m-1)}(b) = (-1)^{m-1}.
\end{cases}$$

The functions defined in (2.1), (2.2) are positive on (a, b) because of the disconjugacy of the operators Δ^m and $(\Delta^*)^m$. Now define

$$K_m(t, s) = \begin{cases}
\frac{G_m(t, s)}{v(t)v^*(s)} & \text{on } a < t \leq s < b \\
\frac{(-1)^m}{v^*(m)(b)} & \text{on } t = a \text{ or } s = b
\end{cases}$$
and

\[L_m(t, s) = \begin{cases}
\frac{G_m(t, s)}{w(t)w^*(s)} & \text{on } a < s \leq t < b \\
1 & \text{on } s = a \text{ or } t = b.
\end{cases} \]

Denote by \(T_u = \{ (t, s) \in [a, b] \times [a, b]; t \leq s \} \) the upper triangle and by \(T_l = \{ (t, s) \in [a, b] \times [a, b]; s \leq t \} \) the lower triangle. The proof of the following lemma can be found in [5], section 3.

Lemma 2.1. (i) \(K_1 \) is a positive constant on \(T_u \) and \(L_1 \) is a positive constant on \(T_l \).

(ii) If \(m \geq 2 \), \(K_m \) is bounded on \(T_u \) and \(K_m \) is continuous and positive on \(T_u \setminus \{(a, a), (b, b)\} \).

(iib) If \(m \geq 2 \), \(L_m \) is bounded on \(T_l \) and \(L_m \) is continuous and positive on \(T_l \setminus \{(a, a), (b, b)\} \).

Proof of Theorem 2.2. Since \(\Delta^m \) and \((\Delta^*)^m \) are disconjugate operators on \([a, b]\) there exist \(\alpha, \alpha^*, \beta \) and \(\beta^* \) in \(C^1([a, b]) \) such that

\[v(t) = (t-a)^m(b-t)^{m-1}\alpha(t), \quad a < t < b, \]
\[v^*(s) = (s-a)^{m-1}(b-s)^m\alpha^*(s), \quad a \leq s \leq b, \]
\[w(t) = (t-a)^{m-1}(b-t)^m\beta(t), \quad a < t < b, \]
\[w^*(s) = (s-a)^m(b-s)^{m-1}\beta^*(s), \quad a < s < b, \]

and \(\alpha, \alpha^*, \beta \) and \(\beta^* > 0 \) on \([a, b]\).

(i) By virtue of Lemma 2.1 we can define

\[M_m = \max_{(t,s) \in T_u} \max_{(t,s) \in T_l} \left(\max K_m(t, s), \max L_m(t, s) \right). \]

Then using Theorem 2.1 we get

\[0 \leq G_m(t, s) \leq M_m \| \alpha \|_\infty \| \alpha^* \|_\infty (t-a)^m(b-t)^{m-1}(s-a)^{m-1}(b-s)^m \]

for \((t, s) \in T_u\) and

\[0 \leq G_m(t, s) \leq M_m \| \beta \|_\infty \| \beta^* \|_\infty (s-a)^m(b-s)^{m-1}(t-a)^{m-1}(b-t)^m \]

for \((t, s) \in T_l\) and (i) follows with

\[C_m = M_m \max(\| \alpha \|_\infty \| \alpha^* \|_\infty, \| \beta \|_\infty \| \beta^* \|_\infty)(b-a)^2(m-1). \]

(ii) Let \(\delta \in (0, (b-a)/2) \). By Lemma 2.1 we can define

\[A_\delta = \min_{(t,s) \in T_u} \min_{a+\delta \leq t \leq b-\delta} \max_{(t,s) \in T_l} \min_{a+\delta \leq s \leq b-\delta} K_m(t, s) \]

and \(A_\delta > 0 \). Therefore if \(t \in [a+\delta, b-\delta] \) and \(s \in [a, b] \) we obtain

\[G_m(t, s) \geq A_\delta \begin{cases}
(t-a)^m(b-t)^{m-1}(s-a)^{m-1}(b-s)^m, & t \leq s, \\
(s-a)^m(b-s)^{m-1}(t-a)^{m-1}(b-t)^m, & s \leq t,
\end{cases} \]

for some positive constant \(C \) and (ii) is proved.
Now we give an example.

Example. When $m = 1$ the Green’s function $G_1(t, s)$ is easily obtained. We have

$$G_1(t, s) = \frac{st^{2-n}}{(n-2)(b^{n-2} - a^{n-2})} \left\{ \begin{array}{ll}
(t^{n-2} - a^{n-2})(b^{n-2} - s^{n-2}), & a \leq t \leq s \leq b,
(s^{n-2} - a^{n-2})(b^{n-2} - t^{n-2}), & a \leq s \leq t \leq b,
\end{array} \right.$$

if $n \geq 3$ and

$$G_1(t, s) = \frac{s}{\ln b - \ln a} \left\{ \begin{array}{ll}
(ln t - ln a)(ln b - ln s), & a \leq t \leq s \leq b,
(ln s - ln a)(ln b - ln t), & a \leq s \leq t \leq b,
\end{array} \right.$$

if $n = 2$.

We conclude this section with the following result.

Theorem 2.3. Assume (H_1) and (H_2). Suppose in addition that h satisfies the following condition:

$$(H_7) \lim_{u \to \infty} \frac{h(u)}{u} = \infty.$$

Then there exist $M, M', M'' > 0$ such that

$$||u||_{\infty} \leq M \quad \text{and} \quad ||u'||_{\infty} \leq M' \lambda + M''$$

for all positive solutions $u \in C^{2m}([a, b])$ of (1.5), (1.6) where M, M' and M'' are independent of $\lambda > 0$.

Proof. Define

$$\rho(t) = (t-a)^m(b-t)^m, \quad a \leq t \leq b.$$

Let $\varphi \in C^{2m}([a, b])$ be the solution of the boundary value problem

$$\left\{ \begin{array}{ll}
(-1)^m \Delta^m \varphi = k \rho & \text{in } [a, b],
\varphi^{(j)}(a) = \varphi^{(j)}(b) = 0, & j = 0, \ldots, m-1.
\end{array} \right.$$

By (H_2) and Theorem 2.1 $\varphi > 0$ on (a, b). Then using a proposition obtained in [7] (Proposition 13 on p. 109) we deduce that

$$\varphi^{(m)}(a) > 0 \quad \text{and} \quad (-1)^m \varphi^{(m)}(b) > 0.$$

Therefore there exist $c_1, c_2 > 0$ such that

$$c_1 \rho \leq \varphi \leq c_2 \rho \quad \text{on } [a, b].$$

By (H_7) there exist $\mu > c_1^{-1}$ and a positive constant c_3 such that

$$h(u) \geq \mu u - c_3 \quad \text{for } u \geq 0.$$

Now let $u \in C^{2m}([a, b])$ be a positive solution of (1.5), (1.6) where $\lambda > 0$. If we multiply equation (1.5) by $t^{n-1} \varphi$ and integrate by parts $2m$ times we obtain

$$\int_a^b t^{n-1} \rho k u \, dt = \int_a^b t^{n-1} \varphi (\lambda g f(u) + kh(u)) \, dt.$$
From (2.4)-(2.6) we deduce that
\[\int_a^b t^{n-1} \rho k u \, dt \geq \mu \int_a^b t^{n-1} \varphi k u \, dt - c_4 \geq \mu c_1 \int_a^b t^{n-1} \rho k u \, dt - c_4 \]
for some positive constant \(c_4 \), hence
\[(2.7) \quad \int_a^b t^{n-1} \rho k u \, dt \leq \frac{c_4}{\mu c_1 - 1}. \]

Using Theorem 2.2(i), (2.4), (2.6) and (2.7) we get
\[u(t) = \int_a^b G_m(t, s)(\lambda g(s)f(u(s)) + k(s)h(u(s))) \, ds \leq M, \quad a \leq t \leq b, \]
for some positive constant \(M \) independent of \(\lambda > 0 \). This gives the first estimate.

Now, if \(m = 1 \) we can write
\[(2.8) \quad t^{n-1} u'(t) = - \int_c^t s^{n-1}(\lambda g(s)f(u(s)) + k(s)h(u(s))) \, ds \]
for \(t \in [a, b] \) with \(c \in (a, b) \) such that \(u'(c) = 0 \). When \(m > 2 \) we have
\[(2.9) \quad u'(t) = \int_a^b \frac{\partial}{\partial t} G_m(t, s)(\lambda g(s)f(u(s)) + k(s)h(u(s))) \, ds. \]

Therefore the second estimate follows from (2.8), (2.9) and the \(a \) priori \(L^\infty \) bound already obtained for \(u \).

Remark 1. Note that in the proof of Theorem 2.3 the condition \(g \neq 0 \) is not needed and when \(g \equiv 0 \) in \([a, b]\) we can take \(M' = 0 \).

3. Proof of Theorem 1.1

As noted in the introduction it is enough to show that problem (1.4), (1.6) has at least one positive solution \(u \in C^{2m}([a, b]) \). The proof makes use of the following fixed point theorem due to Krasnosel'skii ([12]).

Theorem 3.1. Let \(X \) be a Banach space, \(K \) a cone in \(X \) and \(0 < r < R \). Let \(T : \{ u \in K ; 0 < r \leq ||u|| \leq R \} \to K \) be a compact operator such that \(||Tu|| \geq r \) for \(||u|| = r \) and \(||Tu|| \leq R \) for \(||u|| = R \). Then \(T \) has a fixed point in \(\{ u \in K ; 0 < r \leq ||u|| \leq R \} \).

Now by (H2) there exists \(\delta \in (0, (b-a)/2) \) such that \(g \neq 0 \) in \([a+\delta, b-\delta]\). Let \(\eta \) be as in Theorem 2.2(ii). Let \(X \) be the Banach space \(C([a, b]) \) endowed with the sup norm and define the cone
\[K = \{ u \in X ; u \geq 0, \, \min\{u(t) ; a + \delta \leq t \leq b - \delta\} \geq \eta ||u||_\infty \}. \]

For \(u \in K \) we define
\[Tu(t) = \int_a^b G_m(t, s)g(s)f(u(s)) \, ds, \quad a \leq t \leq b. \]

We first show that \(TK \subset K \). By Theorem 2.2(i) we have
\[(3.2) \quad ||Tu||_\infty \leq C_m \int_a^b \rho(s)g(s)f(u(s)) \, ds \]
where \(\rho \) is defined by (2.3). Using Theorem 2.2(ii) we obtain

\[
(3.3) \quad \min\{Tu(t); a + \delta \leq t \leq b - \delta\} \geq \eta C_m \int_a^b \rho(s)g(s)f(u(s))\,ds.
\]

From (3.2) and (3.3) we deduce that

\[
\min\{Tu(t); a + \delta \leq t \leq b - \delta\} \geq \eta \||Tu||_\infty\|
\]

Since by Theorem 2.1 \(Tu \geq 0 \) we conclude that \(TK \subset K \). It is well-known that \(T: K \to K \) is completely continuous.

By \((H_3)\) there exists \(r > 0 \) such that

\[
f(u) \geq Cu \quad \text{for} \quad 0 \leq u \leq r
\]

where \(C \) is a positive constant satisfying

\[
C \eta \int_{a+\delta}^{b-\delta} G_m(\frac{a+b}{2}, s)g(s)\,ds \geq 1.
\]

Now let \(u \in K \) be such that \(||u||_\infty = r \). We have

\[
T(u)(\frac{a+b}{2}) = \int_a^b G_m(\frac{a+b}{2}, s)g(s)f(u(s))\,ds
\]

\[
\geq \int_{a+\delta}^{b-\delta} G_m(\frac{a+b}{2}, s)g(s)f(u(s))\,ds
\]

\[
\geq (C \eta \int_{a+\delta}^{b-\delta} G_m(\frac{a+b}{2}, s)g(s)\,ds)r
\]

\[
\geq r
\]

which implies that \(||Tu||_\infty \geq r \).

By \((H_3)\) there exists \(r' > 0 \) such that

\[
f(u) \leq C'u \quad \text{for} \quad u \geq r'
\]

where \(C' \) is a positive constant satisfying

\[
C'C_m \int_a^b \rho(s)g(s)\,ds \leq 1.
\]

Suppose first that \(f \) is bounded. Then there exists \(B > 0 \) such that \(f(u) \leq B \)

for \(u \geq 0 \). Then choose \(R > r \) such that

\[
BC_m \int_a^b \rho(s)g(s)\,ds \leq R.
\]

Let \(u \in K \) be such that \(||u||_\infty = R \). By (3.2) we have

\[
||Tu||_\infty \leq C_m \int_a^b \rho(s)g(s)f(u(s))\,ds
\]

\[
\leq BC_m \int_a^b \rho(s)g(s)\,ds
\]

\[
\leq R.
\]
Now if \(f \) is unbounded, we choose \(R \) such that \(R > \max\{r, r'\} \) and \(f(u) \leq f(R) \) for \(0 \leq u \leq R \). Let \(u \in K \) be such that \(||u||_\infty = R \). By (3.2) we have

\[
||Tu||_\infty \leq C_m \int_a^b \rho(s)g(s)f(u(s)) \, ds
\]

\[
\leq (C'C_m \int_a^b \rho(s)g(s) \, ds)R
\]

\[
\leq R.
\]

Therefore in both cases we get \(||Tu||_\infty \leq R \) for \(u \in K \) such that \(||u||_\infty = R \).

Thus we may apply Theorem 3.1 to conclude that \(T \) has a fixed point in \(\{u \in K; 0 < r \leq ||u||_\infty \leq R\} \). By Theorem 2.1, (H1), (H2) and the properties of the Green's function any nontrivial fixed point of \(T \) in \(K \) yields a positive solution of problem (1.4), (1.6) in \(C^2([a, b]) \). The proof of the theorem is complete.

Remark 2. Theorem 3.1 still holds if both inequalities are reversed. Then, using analogous arguments, we could treat the case where \(f \) is superlinear at 0 and \(\infty \). As noted in the introduction a different proof of the superlinear case was given in [9].

Remark 3. Clearly Theorem 1.1 remains true for a nonlinearity \(f(|x|, u) \) satisfying:

(i) \(f : [a, b] \times [0, \infty) \rightarrow [0, \infty) \) is a continuous function;

(ii) \(\lim_{u \to 0} \min_{t \in [a, b]} \frac{f(t, u)}{u} = \infty \) and \(\lim_{u \to \infty} \max_{t \in [a, b]} \frac{f(t, u)}{u} = 0 \).

4. PROOF OF THEOREM 1.2

Again it is enough to show that there exists \(\lambda_0 > 0 \) such that for all \(\lambda \in (0, \lambda_0) \) problem (1.5), (1.6) has at least one positive solution \(u \in C^2([a, b]) \). We begin with a lemma.

Lemma 4.1. Let \(N > 0 \). For all \(R > \frac{3||g||_\infty f(0)}{N} \) we can find \(\lambda_0 > 0 \) (depending on \(R \) and \(N \)) such that for all \(\lambda \in (0, \lambda_0) \) and \(u \in [0, R\lambda] \) we have

\[
NR\lambda \geq \lambda||g||_\infty f(u) + ||k||_\infty h(u).
\]

Proof. Since \(||g||_\infty f(0) \leq \frac{NR}{3} \), there exists \(\lambda_1 > 0 \) such that

\[
||g||_\infty f(u) \leq \frac{NR}{2} \quad \text{for} \quad u \in [0, R\lambda_1].
\]

Let \(\varepsilon \in (0, \frac{N}{2||k||_\infty}] \). By (H4) there exists \(r > 0 \) such that \(h(u) \leq \varepsilon u \) for \(u \in [0, r] \). Define \(\lambda_0 = \min\left(\frac{r}{R}, \lambda_1\right) \) and let \(\lambda \in (0, \lambda_0) \) and \(u \in [0, R\lambda] \). Then we have

\[
\lambda||g||_\infty f(u) + ||k||_\infty h(u) \leq \frac{NR\lambda}{2} + ||k||_\infty \varepsilon u \leq NR\lambda.
\]

The proof of the lemma is complete.
Now let
\[N = (C_m \int_a^b \rho(s)ds)^{-1} \]
where \(C_m \) is given by Theorem 2.2(i) and \(\rho \) is defined by (2.3). Fix \(R > \frac{3||g||\infty f(0)}{N} \) and let \(\lambda_0 \) be as in Lemma 4.1. Fix \(\lambda \in (0, \lambda_0] \). First consider the solution \(\psi \in C^{2m}([a, b]) \) of the boundary value problem
\[
\begin{cases}
(-1)^m \Delta^m \psi = g \rho & \text{in } [a, b], \\
\psi^{(j)}(a) = \psi^{(j)}(b) = 0, & j = 0, \ldots, m - 1.
\end{cases}
\]
As in the proof of theorem 2.3 \(\psi > 0 \) on \((a, b)\), \(\psi^{(m)}(a) > 0, (-1)^m \psi^{(m)}(b) > 0 \) and there exist \(d_1, d_2 > 0 \) such that
\[
d_1 \rho \leq \psi \leq d_2 \rho \quad \text{on } [a, b].
\]
By (H5) we can choose \(r = r(\lambda) \in (0, R \lambda] \) such that
\[
f(u) \geq \frac{1}{\lambda d_1} u \quad \text{for } 0 \leq u \leq r
\]
where \(d_1 \) is given by (4.2). Let \(c > 0 \) be such that
\[
c(b - a)^{2m} \leq r
\]
and consider the set of functions
\[
Z = \{ u \in C([a, b]); \ c \rho(t) \leq u(t) \leq R \lambda, \ a \leq t \leq b \}.
\]
Clearly, \(Z \) is a nonempty closed bounded convex subset of \(C([a, b]) \) equipped with the sup norm. For \(u \in Z \) we define
\[
F(u(t)) = \int_a^b G_m(t, s)(\lambda g(s)f(u(s)) + k(s)h(u(s))) \, ds
\]
for \(a \leq t \leq b \). We first prove that \(FZ \subset Z \). Indeed let \(u \in Z \). By Theorem 2.2(i) we have
\[
\|F(u)\|\infty \leq C_m \int_a^b \rho(s)(\lambda \|g\|\infty f(u(s)) + \|k\|\infty h(u(s))) \, ds.
\]
Using (4.5) and Lemma 4.1 we get
\[
\|F(u)\|\infty \leq C_m \int_a^b \rho(s)(\lambda ||g||\infty f(u(s)) + ||k||\infty h(u(s))) \, ds \\
\leq R \lambda.
\]
Now by virtue of (H6), (4.3) and (4.4) we have
\[
F(u(t)) \geq \lambda \int_a^b G_m(t, s)g(s)f(u(s)) \, ds \\
\geq \lambda \int_a^b G_m(t, s)g(s)f(cp(s)) \, ds \\
\geq cd_1^{-1} \int_a^b G_m(t, s)g(s)\rho(s) \, ds \\
\geq c \rho(t)
\]

for \(t \in [a, b] \) because the solution \(\psi \) of (4.1) is given by
\[
\psi(t) = \int_a^b G_m(t, s)g(s)p(s)\,ds.
\]
Therefore \(FZ \subset Z \). Since \(F \) is compact, the Schauder fixed point theorem implies that \(F \) has a fixed point \(u \in Z \). By the properties of the Green's function any fixed point of \(F \) in \(Z \) yields a positive solution of problem (1.5), (1.6) in \(C^{2m}([a, b]) \). The theorem is proved.

Now we shall show that if in addition \(h \) is superlinear at \(\infty \) we can give a bound for \(\lambda_0 \). Let us define
\[
A = \{ \mu > 0; \ (1.5), (1.6) \ has \ a \ positive \ solution \ for \ all \ \lambda \in (0, \mu) \}.
\]
By Theorem 1.2 \(A \neq \emptyset \). Thus, if we define
\[
\lambda^* = \sup A
\]
we have \(\lambda^* \in (0, \infty] \).

Lemma 4.2. Assume moreover that \(h \) satisfies (H7). Then \(\lambda^* < \infty \).

Proof. By Theorem 2.3 there exists \(M > 0 \) such that for all \(\lambda > 0 \) and all positive solutions \(u \in C^{2m}([a, b]) \) of problem (1.5), (1.6) we have
\[
(4.6) \quad ||u||_{\infty} \leq M.
\]
(H1), (H5) and (H6) imply that there exists \(\lambda > 0 \) such that
\[
u < \lambda f(u) \quad \forall \ u \in (0, M].
\]
Therefore we obtain
\[
(4.7) \quad g(s)u < \lambda g(s)f(u)
\]
for \(u \in (0, M] \) and \(s \in [a, b] \) such that \(g(s) \neq 0 \). Now let \(\psi \in C^{2m}([a, b]) \) be as in the proof of Theorem 1.2 and let \(\lambda > 0 \) be such that (1.5), (1.6) has a positive solution \(u \in C^{2m}([a, b]) \). Multiplying (1.5) by \(t^n-\nu \) and integrating by parts \(2m \) times we obtain
\[
\int_a^b s^{n-1} \psi(s)(\lambda g(s)f(u(s)) + k(s)h(u(s)))\,ds = \int_a^b s^{n-1} g(s)p(s)u(s)\,ds.
\]
Since by (H2), (4.2), (4.6) and (4.7) we have
\[
\int_a^b s^{n-1} g(s)p(s)u(s)\,ds < \lambda d^{-1} \int_a^b s^{n-1} \psi(s)g(s)f(u(s))\,ds
\]
we deduce that \(\lambda < \lambda d^{-1} \), hence \(\lambda^* \leq \lambda d^{-1} \). The proof of the lemma is complete.

We conclude this section with a result concerning the limit case \(\lambda = \lambda^* < \infty \).

Theorem 4.1. Assume (H1) and (H2). Suppose in addition that \(h \) satisfies (H7) and that \(f(0) > 0 \). Let \(\lambda \in (0, \infty) \) be such that for all \(\lambda \in (0, \lambda) \) problem (1.5), (1.6) has a positive solution \(u \in C^{2m}([a, b]) \). Then for \(\lambda = \lambda \) problem (1.5), (1.6) has at least one positive solution in \(C^{2m}([a, b]) \).

Proof. Let \((\lambda_n) \) be a sequence in \((0, \lambda)\) such that \(\lambda_n \to \lambda \). By our assumption for each \(n \in \mathbb{N} \) there exists a positive solution \(u_n \in C^{2m}([a, b]) \) of problem
(1.5), (1.6). By Theorem 2.3 \((u_n)\) is bounded in the sup norm. Since \((u_n')\) is also bounded in the sup norm we deduce that \((u_n)\) is equicontinuous. By virtue of the Ascoli theorem there is a subsequence \((u_{n_k})\) of \((u_n)\) which converges uniformly to a function \(u \in C([a, b])\) such that \(u \geq 0\). Clearly

\[
(4.8) \quad u(t) = \int_a^b G_m(t, s)(\hat{\lambda}g(s)f(u(s)) + k(s)h(u(s))) \, ds
\]

for \(t \in [a, b]\). Thus \(u \in C^{2m}([a, b])\) and \(u\) is a solution of problem (1.5), (1.6). Since \(f(0) > 0\), Theorem 2.1, \((H_2)\) and (4.8) imply that \(u(t) > 0\) for \(t \in (a, b)\). The proof of the theorem is complete.

REFERENCES