Hybrid spaces with interesting cohomology

Author:
Kathryn Lesh

Journal:
Trans. Amer. Math. Soc. **347** (1995), 3247-3262

MSC:
Primary 55S10; Secondary 55P15, 55P60

MathSciNet review:
1316857

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be an odd prime, and let be a polynomial algebra over the Steenrod algebra with generators in dimensions prime to . To such an algebra is associated a -adic pseudoreflection group , and we assume that is of order prime to and irreducible. Adjoin to a one-dimensional element , and give an action of the Steenrod algebra by and for an even dimensional element . We show that the subalgebra of elements of consisting of elements of degree greater than one is realized uniquely, up to homotopy, as the cohomology of a -complete space. This space can be thought of as a cross between spaces studied by Aguade, Broto, and Notbohm, and the Clark-Ewing examples, further studied by Dwyer, Miller, and Wilkerson.

**[ABN]**J. Aguadé, C. Broto, and D. Notbohm,*Homotopy classification of spaces with interesting cohomology and a conjecture of Cooke. I*, Topology**33**(1994), no. 3, 455–492. MR**1286926**, 10.1016/0040-9383(94)90023-X**[B-K]**A. K. Bousfield and D. M. Kan,*Homotopy limits, completions and localizations*, Lecture Notes in Mathematics, Vol. 304, Springer-Verlag, Berlin-New York, 1972. MR**0365573****[Brown]**Kenneth S. Brown,*Cohomology of groups*, Graduate Texts in Mathematics, vol. 87, Springer-Verlag, New York-Berlin, 1982. MR**672956****[C-E]**Allan Clark and John Ewing,*The realization of polynomial algebras as cohomology rings*, Pacific J. Math.**50**(1974), 425–434. MR**0367979****[DF-S]**E. Dror Farjoun and J. Smith,*A geometric interpretation of Lannes’ functor 𝑇*, Astérisque**191**(1990), 6, 87–95. International Conference on Homotopy Theory (Marseille-Luminy, 1988). MR**1098968****[Dwyer]**W. G. Dwyer,*Strong convergence of the Eilenberg-Moore spectral sequence*, Topology**13**(1974), 255–265. MR**0394663****[DMW]**W. G. Dwyer, H. R. Miller, and C. W. Wilkerson,*Homotopical uniqueness of classifying spaces*, Topology**31**(1992), no. 1, 29–45. MR**1153237**, 10.1016/0040-9383(92)90062-M**[D-W]**William G. Dwyer and Clarence W. Wilkerson,*Spaces of null homotopic maps*, Astérisque**191**(1990), 6, 97–108. International Conference on Homotopy Theory (Marseille-Luminy, 1988). MR**1098969****[D-Z]**W. Dwyer and A. Zabrodsky,*Maps between classifying spaces*, Algebraic topology, Barcelona, 1986, Lecture Notes in Math., vol. 1298, Springer, Berlin, 1987, pp. 106–119. MR**928826**, 10.1007/BFb0083003**[Lannes]**Jean Lannes,*Sur les espaces fonctionnels dont la source est le classifiant d’un 𝑝-groupe abélien élémentaire*, Inst. Hautes Études Sci. Publ. Math.**75**(1992), 135–244 (French). With an appendix by Michel Zisman. MR**1179079**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
55S10,
55P15,
55P60

Retrieve articles in all journals with MSC: 55S10, 55P15, 55P60

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1995-1316857-9

Article copyright:
© Copyright 1995
American Mathematical Society