Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

$ L\sb 2(q)$ and the rank two Lie groups: their construction in light of Kostant's conjecture


Author: Mark R. Sepanski
Journal: Trans. Amer. Math. Soc. 347 (1995), 3983-4021
MSC: Primary 20D06; Secondary 17B20, 22E60
MathSciNet review: 1308021
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper deals with certain aspects of a conjecture made by B. Kostant in 1983 relating the Coxeter number to the occurrence of the simple finite groups $ L(2,q)$ in simple complex Lie groups. A unified approach to Kostant's conjecture that yields very general results for the rank two case is presented.


References [Enhancements On Off] (What's this?)

  • [1] Theodor Bröcker and Tammo tom Dieck, Representations of compact Lie groups, Graduate Texts in Mathematics, vol. 98, Springer-Verlag, New York, 1985. MR 781344
  • [2] Arjeh M. Cohen and David B. Wales, Finite subgroups of 𝐺₂(𝐶), Comm. Algebra 11 (1983), no. 4, 441–459. MR 689418, 10.1080/00927878308822857
  • [3] -, Finite subgroups of $ {E_6}(\mathbb{C})$ and $ {F_4}(\mathbb{C})$, preprint, 1992.
  • [4] -, Finite simple subgroups of semisimple complex Lie groups--a survey, preprint, 1994.
  • [5] Arjeh M. Cohen, Robert L. Griess Jr., and Bert Lisser, The group 𝐿(2,61) embeds in the Lie group of type 𝐸₈, Comm. Algebra 21 (1993), no. 6, 1889–1907. MR 1215552, 10.1080/00927879308824659
  • [6] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, Atlas of finite groups, Oxford University Press, Eynsham, 1985. Maximal subgroups and ordinary characters for simple groups; With computational assistance from J. G. Thackray. MR 827219
  • [7] Larry Dornhoff, Group representation theory. Part A: Ordinary representation theory, Marcel Dekker, Inc., New York, 1971. Pure and Applied Mathematics, 7. MR 0347959
  • [8] James E. Humphreys, Introduction to Lie algebras and representation theory, Springer-Verlag, New York-Berlin, 1972. Graduate Texts in Mathematics, Vol. 9. MR 0323842
  • [9] Kenneth Ireland and Michael Rosen, A classical introduction to modern number theory, 2nd ed., Graduate Texts in Mathematics, vol. 84, Springer-Verlag, New York, 1990. MR 1070716
  • [10] Peter B. Kleidman and A. J. E. Ryba, Kostant’s conjecture holds for 𝐸₇:𝐿₂(37)<𝐸₇(𝐶), J. Algebra 161 (1993), no. 2, 535–540. MR 1247371, 10.1006/jabr.1993.1234
  • [11] Bertram Kostant, The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group, Amer. J. Math. 81 (1959), 973–1032. MR 0114875
  • [12] -, A tale of two conjugacy classes, Colloquium Lecture of the Amer. Math. Soc., 1983.
  • [13] Arne Meurman, An embedding of 𝑃𝑆𝐿(2,13) in 𝐺₂(𝐶), Lie algebras and related topics (New Brunswick, N.J., 1981) Lecture Notes in Math., vol. 933, Springer, Berlin-New York, 1982, pp. 157–165. MR 675113
  • [14] M. A. Naĭmark and A. I. Štern, Theory of group representations, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 246, Springer-Verlag, New York, 1982. Translated from the Russian by Elizabeth Hewitt; Translation edited by Edwin Hewitt. MR 793377
  • [15] Mohammad Ali Najafi, Clifford algebra structure on the cohomology algebra of compact symmetric spaces, Master's thesis, MIT, February, 1979.
  • [16] Mark R. Sepanski, $ {L_2}(q)$ and the rank two Lie groups: their construction, geometry, and invariants in light of Kostant's Conjecture, Ph.D. thesis, MIT, May, 1994.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 20D06, 17B20, 22E60

Retrieve articles in all journals with MSC: 20D06, 17B20, 22E60


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1995-1308021-4
Keywords: $ {L_2}(q)$, $ PSL(2,q)$, Kostant's conjecture
Article copyright: © Copyright 1995 American Mathematical Society