Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



$ L\sb 2(q)$ and the rank two Lie groups: their construction in light of Kostant's conjecture

Author: Mark R. Sepanski
Journal: Trans. Amer. Math. Soc. 347 (1995), 3983-4021
MSC: Primary 20D06; Secondary 17B20, 22E60
MathSciNet review: 1308021
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper deals with certain aspects of a conjecture made by B. Kostant in 1983 relating the Coxeter number to the occurrence of the simple finite groups $ L(2,q)$ in simple complex Lie groups. A unified approach to Kostant's conjecture that yields very general results for the rank two case is presented.

References [Enhancements On Off] (What's this?)

  • [1] T. Brocker and T. tom Dieck, Representations of compact Lie groups, Springer-Verlag, 1985. MR 781344 (86i:22023)
  • [2] A. M. Cohen and D. B. Wales, Finite subgroups of $ {G_2}(\mathbb{C})$, Comm. Algebra 11 (1983), 441-459. MR 689418 (85b:20010)
  • [3] -, Finite subgroups of $ {E_6}(\mathbb{C})$ and $ {F_4}(\mathbb{C})$, preprint, 1992.
  • [4] -, Finite simple subgroups of semisimple complex Lie groups--a survey, preprint, 1994.
  • [5] Arjeh M. Cohen, Jr., Robert L. Griess, and Bert Lisser, The groups $ L(2,61)$ embeds in the Lie group of type $ {E_8}$, Comm. Algebra 21 (1993), 1889-1907. MR 1215552 (94m:20041)
  • [6] J. H. Conway, R. T. Curtis, et al., Atlas of finite groups, Clarendon Press, Oxford, 1985. MR 827219 (88g:20025)
  • [7] Larry Dornhoff, Group representation theory: Part A, Marcel Dekker, 1971. MR 0347959 (50:458a)
  • [8] James E. Humphreys, Introduction to Lie algebras and representation theory, Springer-Verlag, 1972. MR 0323842 (48:2197)
  • [9] Kenneth Ireland and Michael Rosen, A classical introduction to modern number theory, Springer-Verlag, 1990. MR 1070716 (92e:11001)
  • [10] Peter B. Kleidman and A. J. E. Ryba, Kostant's conjecture holds for $ {E_7}:{L_2}(37) < {E_7}(\mathbb{C})$, J. Algebra 161 (1993), 535-540. MR 1247371 (94k:20025)
  • [11] Bertram Kostant, The principal $ 3$-dimensional subgroup and the Betti numbers of a complex simple Lie group, Amer. J. Math. 81 (1959), 973-1032. MR 0114875 (22:5693)
  • [12] -, A tale of two conjugacy classes, Colloquium Lecture of the Amer. Math. Soc., 1983.
  • [13] A. Meurman, An embedding of $ PSL(2,13)$ in $ {G_2}(\mathbb{C})$, Lie Algebras and Related Topics, Lecture Notes in Math., vol. 933, Springer, 1982. MR 675113 (84b:20046)
  • [14] M. A. Naimark and A. I. Štern, Theory of group representations, Springer-Verlag, 1982. MR 793377 (86k:22001)
  • [15] Mohammad Ali Najafi, Clifford algebra structure on the cohomology algebra of compact symmetric spaces, Master's thesis, MIT, February, 1979.
  • [16] Mark R. Sepanski, $ {L_2}(q)$ and the rank two Lie groups: their construction, geometry, and invariants in light of Kostant's Conjecture, Ph.D. thesis, MIT, May, 1994.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 20D06, 17B20, 22E60

Retrieve articles in all journals with MSC: 20D06, 17B20, 22E60

Additional Information

Keywords: $ {L_2}(q)$, $ PSL(2,q)$, Kostant's conjecture
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society