On spectral geometry of minimal surfaces in

Author:
Yi Bing Shen

Journal:
Trans. Amer. Math. Soc. **347** (1995), 3873-3889

MSC:
Primary 53C42; Secondary 58G25

DOI:
https://doi.org/10.1090/S0002-9947-1995-1308022-6

MathSciNet review:
1308022

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: By employing the standard isometric imbedding of into the Euclidean space, a classification theorem for full, minimal, -type surfaces in that are not holomorphic is given. All such compact minimal surfaces are either totally real minimal surfaces in or totally real superminimal surfaces in and . In the latter case, they are locally unique. Moreover, some eigenvalue inequalities for compact minimal surfaces of with constant Kaehler angle are shown.

**[1]**J. Bolton, G. R. Jensen, M. Rigoli and L. M. Woodward,*On conformal minimal immersions of**into*, Math. Ann.**279**(1988), 599-620. MR**926423 (88m:53110)****[2]**B. Y. Chen,*Total mean curvature and submanifolds of finite type*, World Science, Singapore, 1984. MR**749575 (86b:53053)****[3]**S. S. Chern and J. G. Wolfson,*Minimal surfaces by moving frames*, Amer. J. Math.**105**(1983), 59-83. MR**692106 (84i:53056)****[4]**J. H. Eschenburg, I. V. Guadalupe and R. A. Tribuzy,*The fundamental equations of minimal surfaces in*, Math. Ann.**270**(1985), 571-598. MR**776173 (86m:58041)****[5]**K. Kenmotsu,*On minimal immersions of**into*, J. Math. Soc. Japan**37**(1985), 665-682. MR**806307 (87b:53091)****[6]**A. Martinez and A. Ros,*On real hypersurfaces of finite type of*, Kōdai Math. J.**7**(1984), 304-316. MR**760040 (86b:53055)****[7]**T. Ogata,*Curvature pinching theorem for minimal surfaces with constant Kaehler angle in complex projective spaces*, Tôhoku Math. J.**43**(1991), 361-374. MR**1117210 (92f:53072)****[8]**Y. Ohnita,*Minimal surfaces with constant curvature and Kaehler angle in complex space forms*, Tsukuba J. Math.**13**(1989), 191-207. MR**1003602 (90c:53157)****[9]**A. Ros,*Spectral geometry of CR-minimal submanifolds in the complex projective space*, Kōdai Math. J.**6**(1983), 88-99. MR**698330 (84m:58157)****[10]**-,*On spectral geometry of Kaehler submanifolds*, J. Math. Soc. Japan**36**(1984), 433-448. MR**746704 (85g:53055)****[11]**Y. B. Shen,*On spectral geometry of totally real minimal submanifolds*, Chinese Ann. of Math.**12A**(1991), 745-753. MR**1154155 (93g:58153)****[12]**T. Takahashi,*Minimal immersions of Riemannian manifolds*, J. Math. Soc. Japan**18**(1966), 380-385. MR**0198393 (33:6551)****[13]**J. G. Wolfson,*On minimal surfaces in a Kähler manifold of constant holomorphic sectional curvature*, Trans. Amer. Math. Soc.**290**(1985), 627-646. MR**792816 (86k:53077)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
53C42,
58G25

Retrieve articles in all journals with MSC: 53C42, 58G25

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1995-1308022-6

Keywords:
Minimal surface,
Kaehler angle,
complex projective space,
finite type submanifolds

Article copyright:
© Copyright 1995
American Mathematical Society