Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On the classification of $ (n-k+1)$-connected embeddings of $ n$-manifolds into $ (n+k)$-manifolds in the metastable range


Author: Rong Liu
Journal: Trans. Amer. Math. Soc. 347 (1995), 4245-4258
MSC: Primary 57N35; Secondary 55Q05
DOI: https://doi.org/10.1090/S0002-9947-1995-1290732-0
MathSciNet review: 1290732
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For an $ (n - k + 1)$-connected map $ f$ from a connected smooth $ n$-manifold $ M$ to a connected smooth $ (n + k)$-manifold $ V$, where $ M$ is closed, we work out the isotopy group $ {[M \subset V]_f}$ in the metastable range $ n \leqslant 2k - 4$. To prove our results, we develop the Hurewicz-type theorems which provide us with the efficient methods of computing the homology groups with local coefficients from the homotopy groups.


References [Enhancements On Off] (What's this?)

  • [1] H. Cartan and S. Eilenberg, Homological algebra, Princeton Univ. Press, Princeton, NJ, 1956. MR 0077480 (17:1040e)
  • [2] J.-P. Dax, Étude homotopique des espaces de plongements, Ann. Sci. École Norm. Sup. 5 (1972), 303-377. MR 0321110 (47:9643)
  • [3] N. Habegger, Obstruction to embedding disks. II (a proof of a conjecture of Hudson), Topology Appl. 17 (1984), 123-130. MR 738941 (85j:57031)
  • [4] -, Embedding up to homotopy type--the first obstruction, Topology Appl. 17 (1984), 131-143. MR 738942 (85e:57022)
  • [5] A. Haefliger, Plongements différentiables de variétés dans variétés, Comment. Math. Helv. 36 (1961), 47-82. MR 0145538 (26:3069)
  • [6] -, Plongements différentiables dans le domaine stable, Comment. Math. Helv. 37 (1963), 155-176. MR 0157391 (28:625)
  • [7] -, Plongements de variétés dans le domaine stable, Seminaire Bourbaki, 150, no. 245 (1962/63).
  • [8] A. Haefliger and M. Hirsch, On the existence and classification of differentiable embeddings, Topology 2 (1963), 129-135. MR 0149494 (26:6981)
  • [9] A. Hatcher and F. Quinn, Bordism invariants of intersections of submanifolds, Trans. Amer. Math. Soc. 200 (1974), 327-344. MR 0353322 (50:5806)
  • [10] J. P. F. Hudson, Piecewise linear embeddings, Ann. of Math. (2) 85 (1967), 1-31. MR 0215308 (35:6149)
  • [11] L. L. Larmore, Isotopy groupe, Trans. Amer. Math. Soc. 239 (1978), 67-97. MR 487040 (81f:57031)
  • [12] Liu Rong, On the classification of embeddings of $ n$-manifolds into $ 2n$-manifolds in the same regular homotopy class (to appear).
  • [13] H. A. Salomonsen, On the existence and classification of differential embeddings in the metastable range, Aarhus mimeographed notes, 1973.
  • [14] R. M. Switzer, Algebraic topology--Homotopy and homology, Springer-Verlag, 1975. MR 0385836 (52:6695)
  • [15] C. T. C. Wall, Classification problems of differential topology. IV, Topology 5 (1966), 73-94. MR 0192509 (33:734)
  • [16] G. W. Whitehead, Homotopy theory, M.I.T. Press, Cambridge, Mass., 1966. MR 0091469 (19:974c)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57N35, 55Q05

Retrieve articles in all journals with MSC: 57N35, 55Q05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1995-1290732-0
Keywords: Embedding, isotopy classification, twisted Hurewicz theorems
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society