The alternative torus and the structure of elliptic quasi-simple Lie algebras of type

Authors:
Stephen Berman, Yun Gao, Yaroslav Krylyuk and Erhard Neher

Journal:
Trans. Amer. Math. Soc. **347** (1995), 4315-4363

MSC:
Primary 17B37; Secondary 17B67

DOI:
https://doi.org/10.1090/S0002-9947-1995-1303115-1

MathSciNet review:
1303115

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We present the complete classification of the tame irreducible elliptic quasi-simple Lie algebras of type , and in particular, specialize on the case where the coordinates are not associative. Here the coordinates are Cayley-Dickson algebras over Laurent polynomial rings in variables, which we call alternative tori. In giving our classification we need to present much information on these alternative tori and the Lie algebras coordinatized by them.

**[AF]**B. N. Allison and J. R. Faulkner,*Nonassociative coefficient algebras for Steinberg unitary Lie algebras*, J. Algebra**161**(1993), 1-19. MR**1245840 (94j:17004)****[BGK]**S. Berman, Y. Gao, and Y. Krylyuk,*Quantum tori and the structure of elliptic quasi-simple Lie algebras*, J. Funct. Anal. (to appear). MR**1370607 (97b:17007)****[BeK]**S. Berman and Ya. S. Krylyuk,*Universal central extensions of twisted and untwisted Lie algebras extended over commutative rings*, J. Algebra (to appear). MR**1325778 (96e:17066)****[BM]**S. Berman and R. V. Moody,*Lie algebras graded by finite root systems and the intersection matrix algebras of Slodowy*, Invent. Math**108**(1992), 323-347. MR**1161095 (93e:17031)****[BeM]**G. M. Benkart and R. V. Moody,*Derivations, central extensions and affine Lie algebras*, Algebras, Groups and Geometries**3**(1986), 456-492. MR**901810 (89a:17027)****[BZ]**G. M. Benkart and E.I. Zelmanov,*Lie algebras graded by finite root systems and intersection matrix algebras*, Preprint.**[BK]**H. Braun and M. Koecher,*Jordan-Algebren*, Springer-Verlag, Berlin, 1966. MR**0204470 (34:4310)****[F]**J. R. Faulkner,*Barbilian planes*, Geom. Dedicata**30**(1989), 125-181. MR**1000255 (90f:51006)****[G]**Y. Gao,*Skew-dihedral homology and involutive Lie algebras graded by finite root systems*, Ph.D. Thesis, University of Saskatchewan, 1994.**[H-KT]**R. Høegh-Krohn and B. Torresani,*Classification and construction of quasi-simple Lie algebras*, J. Funct. Anal.**89**(1990), 106-136. MR**1040958 (91a:17008)****[KL]**C. Kassel and J. L. Loday,*Extensions centrales d'algèbres de Lie*, Ann. Inst. Fourier (Grenoble)**32**(1982), 119-142. MR**694130 (85g:17004)****[M]**Y. I. Manin,*Topics in noncommutative geometry*, Princeton University Press, 1991. MR**1095783 (92k:58024)****[McC]**K. McCrimmon,*Derivations and Cayley derivations of generalized Cayley-Dickson algebras*, Pacific J. Math**117**(1985), 163-182. MR**777443 (87c:17002)****[N]**E. Neher,*Lie algebras graded by*-*graded root systems and Jordan pairs covered by a grid*, Preprint.**[S]**R. D. Schafer,*An introduction to nonassociative algebras*, Academic Press, New York and London, 1966. MR**0210757 (35:1643)****[Se]**G. B. Seligman,*Rational methods in Lie algebras*, Lecture Notes Pure Appl. Math., Marcel Dekker, New York, 1976. MR**0427394 (55:428)****[SSSZ]**I. P. Shestakov, A. I. Shirshov, A. M. Slin'ko and K. A. Zhevlakov,*Rings that are nearly associative*, Academic Press, New York, 1982. MR**668355 (83i:17001)****[W]**M. Wambst,*Homologie de Hochschild et homologie cyclique du tore quantique multipara métré*, Preprint.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
17B37,
17B67

Retrieve articles in all journals with MSC: 17B37, 17B67

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1995-1303115-1

Article copyright:
© Copyright 1995
American Mathematical Society