Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Ramanujan's theories of elliptic functions to alternative bases


Authors: Bruce C. Berndt, S. Bhargava and Frank G. Garvan
Journal: Trans. Amer. Math. Soc. 347 (1995), 4163-4244
MSC: Primary 33E05; Secondary 11F27, 33C05, 33D10
DOI: https://doi.org/10.1090/S0002-9947-1995-1311903-0
MathSciNet review: 1311903
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In his famous paper on modular equations and approximations to $ \pi $, Ramanujan offers several series representations for $ 1/\pi $, which he claims are derived from "corresponding theories" in which the classical base $ q$ is replaced by one of three other bases. The formulas for $ 1/\pi $ were only recently proved by J. M. and P. B. Borwein in 1987, but these "corresponding theories" have never been heretofore developed. However, on six pages of his notebooks, Ramanujan gives approximately 50 results without proofs in these theories. The purpose of this paper is to prove all of these claims, and several further results are established as well.


References [Enhancements On Off] (What's this?)

  • [1] A. O. L. Atkin and P. Swinnerton-Dyer, Some properties of partitions, Proc. London Math. Soc. (3) 4 (1954), 84-106. MR 0060535 (15:685d)
  • [2] W.N. Bailey, Generalized hypergeometric series, Stechert-Hafner, New York, 1964. MR 0185155 (32:2625)
  • [3] B.C. Berndt, Ramanujan's notebooks, Part I, Springer-Verlag, New York, 1985. MR 781125 (86c:01062)
  • [4] -, Ramanujan's notebooks, Part II, Springer-Verlag, New York, 1989.
  • [5] -, Ramanujan's notebooks, Part III, Springer-Verlag, New York, 1991.
  • [6] -, On a certain theta-function in a letter of Ramanujan from Fitzroy House, Ganita 43 (1992), 33-43. MR 1218050 (94b:11105)
  • [7] -, Ramanujan's theory of theta-functions, Theta Functions, From the Classical to the Modern (M. Ram Murty, ed.), Centre de Recherches Mathematiques Proceedings and Lecture Notes, Amer. Math. Soc., Providence, RI, 1993, pp. 1-63. MR 1224048 (93m:11036)
  • [8] -, Ramanujan's Notebooks, Part IV, Springer-Verlag, New York, 1994.
  • [9] B. C. Berndt and S. Bhargava, Ramanujan's inversion formulas for the lemniscate and allied functions, J. Math. Anal. Appl. 160 (1991), 504-524. MR 1126135 (92j:33030)
  • [10] B.C. Berndt and L.-C. Zhang, Ramanujan's identities for eta-functions, Math. Ann. 292 (1992), 561-573. MR 1152951 (93g:11039)
  • [11] S. Bhargava, On unification of the cubic analogues of the Jacobian theta-function, J. Math. Anal. Appl. 193 (1955), 543-558. MR 1338721 (96f:33037)
  • [12] J.M. Borwein and P.B. Borwein, $ Pi$ and the $ AGM$, Wiley, New York, 1987.
  • [13] -, Explicit Ramanujan-type approximations to $ pi$ of high order, Proc. Indian Acad. Sci. (Math. Sci.) 97 (1987), 53-59. MR 983604 (90d:11142)
  • [14] -, Ramanujan's rational and algebraic series for $ 1/\pi $, Indian J. Math. 51 (1987), 147-160.
  • [15] -, More Ramanujan-type series for $ 1/\pi $, Ramanujan Revisited, Academic Press, Boston, 1988, pp. 359-374.
  • [16] -, A cubic counterpart of Jacobi's identity and the $ AGM$, Trans. Amer. Math. Soc. 323 (1991), 691-701. MR 1010408 (91e:33012)
  • [17] -, Class number three Ramanujan type series for $ 1/\pi $, J. Comput. Appl. Math. 46 (1993), 281-290. MR 1222488 (94h:11113)
  • [18] J.M. Borwein, P.B. Borwein, and F.G. Garvan, Some cubic modular identities of Ramanujan, Trans. Amer. Math. Soc. 343 (1994), 35-47. MR 1243610 (94j:11019)
  • [19] H.H. Chan, On Ramanujan's cubic continued fraction, Acta Arith. (to appear). MR 1366039 (96j:11009)
  • [20] D.V. Chudnovsky and G.V. Chudnovsky, Approximations and complex multiplication according to Ramanujan, Ramanujan Revisited, Academic Press, Boston, 1988, pp. 375-472. MR 938975 (89f:11099)
  • [21] A. Erdélyi, editor, Higher transcendental functions, Vol. 1, McGraw-Hill, New York, 1953.
  • [22] H. M. Farkas and I. Kra, Automorphic forms for subgroups of the modular group, Israel J. Math. 82 (1993), 87-131. MR 1239046 (94e:11040)
  • [23] H. M. Farkas and Y. Kopeliovich, New theta constant identities, Israel J. Math. 82 (1993), 133-141. MR 1239047 (94k:33044)
  • [24] N. J. Fine, Basic hypergeometric series and applications, Math. Surveys Monographs, vol. 27, Amer. Math. Soc., Providence, RI, 1988. MR 956465 (91j:33011)
  • [25] F. G. Garvan, Cubic modular identities of Ramanujan, hypergeometric functions and analogues of the arithmetic-geometric mean iteration, The Rademacher Legacy to Mathematics (G.E. Andrews, D.M. Bressoud, and A. Parson, eds.), Contemp. Math., vol. 166, Amer. Math. Soc., Providence, RI, 1994, pp. 245-264. MR 1284065 (95g:39022)
  • [26] -, Ramanujan's theories of elliptic functions to alternatiave bases--a symbolic excursion, J. Symbolic Comput. (to appear).
  • [27] -, A combinatorial proof of the Farkas-Kra theta function identities and their generalizations, J. Math. Anal. Appl. 195 (1995). MR 1354548 (97b:11060)
  • [28] G. Gasper and M. Rahman, Basic hypergeometric series, Cambridge Univ. Press, Cambridge, 1990. MR 1052153 (91d:33034)
  • [29] E. Goursat, Sur l'équation différentielle linéaire qui admet pour intégrale la série hypergéométrique, Ann. Sci. École Norm. Sup. (2) 10 (1881), 3-142. MR 1508709
  • [30] P. Henrici, Applied and computational complex analysis, Vol. 1, Wiley, New York, 1990. MR 1008928 (90d:30002)
  • [31] M. Hirschhorn, F. Garvan, and J. Borwein, Cubic analogues of the Jacobian theta function $ \theta (z,q)$, Canad. J. Math. 45 (1993), 673-694. MR 1227653 (94m:33011)
  • [32] M. I. Knopp, Modular functions in analytic number theory, Markham, Chicago, IL, 1970. MR 0265287 (42:198)
  • [33] S. Ramanujan, Modular equations and approximations to $ \pi $, Quart. J. Math. (Oxford) 45 (1914), 350-372.
  • [34] -, On certain arithmetical functions, Trans. Cambridge Philos. Soc. 22 (1916), 159-184.
  • [35] -, Notebooks (2 volumes), Tata Institute of Fundamental Research, Bombay, 1957.
  • [36] -, Collected papers, Chelsea, New York, 1962.
  • [37] -, The lost notebook and other unpublished papers, Narosa, New Delhi, 1988.
  • [38] R.A. Rankin, Modular forms and functions, Cambridge Univ. Press, Cambridge, 1977. MR 0498390 (58:16518)
  • [39] B. Schoeneberg, Elliptic modular functions, Springer-Verlag, Berlin, 1974. MR 0412107 (54:236)
  • [40] L.-C. Shen, On Ramanujan's theory of elliptic functions based on the hypergeometric series $ {}_2{F_1}(\tfrac{1} {3},\tfrac{2} {3};1;x)$, J. Number Theory (to appear).
  • [41] K. Venkatachaliengar, Development of elliptic functions according to Ramanujan, Tech. Report 2, Madurai Kamaraj University, Madurai, 1988. MR 560297 (81f:30028)
  • [42] E.T. Whittaker and G.N. Watson, A course of modern analysis, 4th ed., Cambridge Univ. Press, Cambridge, 1966. MR 1424469 (97k:01072)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 33E05, 11F27, 33C05, 33D10

Retrieve articles in all journals with MSC: 33E05, 11F27, 33C05, 33D10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1995-1311903-0
Keywords: $ \pi $, elliptic functions, theta-functions, ordinary hypergeometric functions, elliptic integrals, modular equations, Eisenstein series, the Borweins' cubic theta-functions, principle of triplication
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society