Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Characterizations of Bergman spaces and Bloch space in the unit ball of $ {\bf C}\sp n$


Authors: Cai Heng Ouyang, Wei Sheng Yang and Ru Han Zhao
Journal: Trans. Amer. Math. Soc. 347 (1995), 4301-4313
MSC: Primary 32A37; Secondary 46E15
DOI: https://doi.org/10.1090/S0002-9947-1995-1311908-X
MathSciNet review: 1311908
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we prove that, in the unit ball $ B$ of $ {{\mathbf{C}}^n}$, a holomorphic function $ f$ is in the Bergman space $ L_a^p(B),\;0 < p < \infty $, if and only if

$\displaystyle \int_B {\vert\tilde \nabla } f(z){\vert^2}\vert f(z){\vert^{p - 2}}{(1 - \vert z{\vert^2})^{n + 1}}d\lambda (z) < \infty ,$

where $ \tilde \nabla $ and $ \lambda $ denote the invariant gradient and invariant measure on $ B$, respectively. Further, we give some characterizations of Bloch functions in the unit ball $ B$, including an exponential decay characterization of Bloch functions. We also give the analogous results for $ \operatorname{BMOA} (\partial B)$ functions in the unit ball.

References [Enhancements On Off] (What's this?)

  • [1] J. S. Choa and B. R. Choe, A Littlewood-Paley type identity and a characterization of $ BMOA$, Complex Variables 17 (1991), 15-23. MR 1123798 (92j:32010)
  • [2] J. S. Choa, H. O. Kim and Y. Y. Park, A Bergman-Carleson measure characterization of Bloch functions in the unit ball of $ {{\mathbf{C}}^n}$, Bull. Korean Math. Soc. 29 (1992), 285-293. MR 1180622 (94e:32014)
  • [3] R. Coifman, R. Rochberg and G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of Math. (2) 103 (1976), 611-635. MR 0412721 (54:843)
  • [4] C. H. Ouyang, Some classes of functions with exponential decay in the unit ball of $ {{\mathbf{C}}^n}$, Publ. Res. Inst. Math. Sci. 25 (1989), 263-277. MR 1003788 (90i:32008)
  • [5] -, An extension theorem for Bloch functions in the unit ball, Acta Math. Sci. 10 (1990), 455-461. (Chinese) MR 1104075 (92c:32009)
  • [6] W. Rudin, Function theory in the unit ball of $ {{\mathbf{C}}^n}$, Springer-Verlag, New York, 1980. MR 601594 (82i:32002)
  • [7] I. Sokolnikoff, Tensor analysis, Wiley, New York, 1964.
  • [8] M. Stoll, A characterization of Hardy spaces on the unit ball of $ {{\mathbf{C}}^n}$, J. London Math. Soc. (2) 48 (1993), 126-136. MR 1223898 (94g:32006)
  • [9] R. Timoney, Bloch functions in several complex variables. I, Bull. London Math. Soc. 12 (1980), 241-267. MR 576974 (83b:32004)
  • [10] D. Ullrich, Radial limits of $ \mathcal{M}$-subharmonic functions, Trans. Amer. Math. Soc. 292 (1985), 501-518. MR 808734 (87a:31007)
  • [11] S. Yamashita, Criteria for functions to be Hardy class $ {H^p}$, Proc. Amer. Math. Soc. 75 (1979), 69-72. MR 529215 (80h:30031)
  • [12] -, Holomorphic functions and area integrals, Boll. Un. Math. Ital. A6 (1982), 115-120. MR 652371 (83e:30038)
  • [13] R. H. Zhao, Characterizations of weighted Bergman spaces and Bloch space (to appear).

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 32A37, 46E15

Retrieve articles in all journals with MSC: 32A37, 46E15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1995-1311908-X
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society