Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)

 

Radially symmetric internal layers in a semilinear elliptic system


Author: Manuel A. del Pino
Journal: Trans. Amer. Math. Soc. 347 (1995), 4807-4837
MSC: Primary 35J65; Secondary 35B25, 35B60
MathSciNet review: 1303116
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ B$ denote the unit ball in $ {R^N},\quad N \geqslant 1$. We consider the problem of finding nonconstant solutions to a class of elliptic systems including the Gierer and Meinhardt model of biological pattern formation,

$\displaystyle (1.1)\qquad {\varepsilon ^2}\Delta u - u + \frac{{{u^2}}} {{1 + k{u^2}}} + p = 0\quad {\text{in}}B,$

$\displaystyle (1.2)\quad D\Delta v - v + {u^2} = 0\quad {\text{in}}B,$

$\displaystyle (1.3)\quad \frac{{\partial u}} {{\partial n}} = 0 = \frac{{\partial v}} {{\partial n}}\quad {\text{on}}\partial B,$

where $ \varepsilon $, $ D$, $ k$ and $ \rho $ denote positive constants and $ n$ the unit outer normal to $ \partial B$.

Assuming that the parameters $ \rho $, $ k$ are small and $ D$ large, we construct a family of radially symmetric solutions to (1.1)-(1.3) indexed by the parameter $ \varepsilon $, which exhibits an internal layer in $ B$, as $ \varepsilon \to 0$.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 35J65, 35B25, 35B60

Retrieve articles in all journals with MSC: 35J65, 35B25, 35B60


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1995-1303116-3
PII: S 0002-9947(1995)1303116-3
Keywords: Elliptic system, layered solutions, radial symmetry
Article copyright: © Copyright 1995 American Mathematical Society