Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

A categorical approach to matrix Toda brackets


Authors: K. A. Hardie, K. H. Kamps and H. J. Marcum
Journal: Trans. Amer. Math. Soc. 347 (1995), 4625-4649
MSC: Primary 55U35; Secondary 18D05, 55Q35
MathSciNet review: 1303119
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we give a categorical treatment of matrix Toda brackets, both in the pre- and post-compositional versions. Explicitly the setting in which we work is, à la Gabriel-Zisman, a $ 2$-category with zeros. The development parallels that in the topological setting but with homotopy groups replaced by nullity groups of invertible $ 2$-morphisms. A central notion is that of conjugation of $ 2$-morphisms. Our treatment of matrix Toda brackets is carried forward to the point of establishing appropriate indeterminacies.


References [Enhancements On Off] (What's this?)

  • [1] M.G. Barratt, Homotopy operations and homotopy groups, AMS Summer Institute on Algebraic Topology, Seattle, 1963 (unpublished).
  • [2] Hans Joachim Baues and Winfried Dreckmann, The cohomology of homotopy categories and the general linear group, 𝐾-Theory 3 (1989), no. 4, 307–338. MR 1047191, 10.1007/BF00584524
  • [3] P. Gabriel and M. Zisman, Calculus of fractions and homotopy theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 35, Springer-Verlag New York, Inc., New York, 1967. MR 0210125
  • [4] K. A. Hardie, K. H. Kamps, and H. Marcum, Computing homotopy groups of a homotopy pullback, Quaestiones Math. 14 (1991), no. 2, 179–199. MR 1107679
  • [5] K. A. Hardie and A. V. Jansen, Toda brackets and the category of homotopy pairs, Proceedings of the Symposium on Categorical Algebra and Topology (Cape Town, 1981), 1983, pp. 107–128. MR 700243
  • [6] Peter Hilton, Homotopy theory and duality, Gordon and Breach Science Publishers, New York-London-Paris, 1965. MR 0198466
  • [7] Howard J. Marcum, Parameter constructions in homotopy theory, An. Acad. Brasil. Ci. 48 (1976), no. 3, 387–402. MR 0464219
  • [8] -, Homotopy equivalences in $ 2$-categories, Lecture Notes in Math, vol. 1425, Springer, 1990, pp. 71-86.
  • [9] -, Funciorial properties of the Hopf invariant (preprint).
  • [10] Mamoru Mimura, On the generalized Hopf homomorphism and the higher composition. I, J. Math. Kyoto Univ. 4 (1964), 171–190. MR 0179793
  • [11] T. Müller, Zur Theorie der Würfelsätze, Dissertation, Fernuniversität Hagen, 1982.
  • [12] Hirosi Toda, Composition methods in homotopy groups of spheres, Annals of Mathematics Studies, No. 49, Princeton University Press, Princeton, N.J., 1962. MR 0143217

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 55U35, 18D05, 55Q35

Retrieve articles in all journals with MSC: 55U35, 18D05, 55Q35


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1995-1303119-9
Article copyright: © Copyright 1995 American Mathematical Society