A geometric approach to regular perturbation theory with an application to hydrodynamics

Author:
Carmen Chicone

Journal:
Trans. Amer. Math. Soc. **347** (1995), 4559-4598

MSC:
Primary 58F22; Secondary 34C25, 58F30, 76E99

MathSciNet review:
1311905

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The Lyapunov-Schmidt reduction technique is used to prove a persistence theorem for fixed points of a parameterized family of maps. This theorem is specialized to give a method for detecting the existence of persistent periodic solutions of perturbed systems of differential equations. In turn, this specialization is applied to prove the existence of many hyperbolic periodic solutions of a steady state solution of Euler's hydrodynamic partial differential equations. Incidentally, using recent results of S. Friedlander and M. M. Vishik, the existence of hyperbolic periodic orbits implies the steady state solutions of the Eulerian partial differential equation are hydrodynamically unstable. In addition, a class of the steady state solutions of Euler's equations are shown to exhibit chaos.

**[1]**V. I. Arnold,*Mathematical methods of classical mechanics*, Springer-Verlag, New York-Heidelberg, 1978. Translated from the Russian by K. Vogtmann and A. Weinstein; Graduate Texts in Mathematics, 60. MR**0690288****[2]**-,*Geometric methods in the theory of ordinary differential equations*, Springer-Verlag, New York, 1982.**[3]**Paul F. Byrd and Morris D. Friedman,*Handbook of elliptic integrals for engineers and scientists*, Die Grundlehren der mathematischen Wissenschaften, Band 67, Springer-Verlag, New York-Heidelberg, 1971. Second edition, revised. MR**0277773****[4]**Carmen Chicone,*The topology of stationary curl parallel solutions of Euler’s equations*, Israel J. Math.**39**(1981), no. 1-2, 161–166. MR**617299**, 10.1007/BF02762862**[5]**Carmen Chicone,*Bifurcations of nonlinear oscillations and frequency entrainment near resonance*, SIAM J. Math. Anal.**23**(1992), no. 6, 1577–1608. MR**1185642**, 10.1137/0523087**[6]**Carmen Chicone,*Lyapunov-Schmidt reduction and Mel′nikov integrals for bifurcation of periodic solutions in coupled oscillators*, J. Differential Equations**112**(1994), no. 2, 407–447. MR**1293477**, 10.1006/jdeq.1994.1110**[7]**Carmen Chicone,*Periodic solutions of a system of coupled oscillators near resonance*, SIAM J. Math. Anal.**26**(1995), no. 5, 1257–1283. MR**1347420**, 10.1137/S0036141093243538**[8]**Stephen P. Diliberto,*On systems of ordinary differential equations*, Contributions to the Theory of Nonlinear Oscillations, Annals of Mathematics Studies, no. 20, Princeton University Press, Princeton, N.J., 1950, pp. 1–38. MR**0034931****[9]**Susan Friedlander, Andrew D. Gilbert, and Misha Vishik,*Hydrodynamic instability for certain ABC flows*, Geophys. Astrophys. Fluid Dynam.**73**(1993), no. 1-4, 97–107. Magnetohydrodynamic stability and dynamos (Chicago, IL, 1992). MR**1289022**, 10.1080/03091929308203622**[10]**Susan Friedlander and Misha M. Vishik,*Instability criteria for the flow of an inviscid incompressible fluid*, Phys. Rev. Lett.**66**(1991), no. 17, 2204–2206. MR**1102381**, 10.1103/PhysRevLett.66.2204**[11]**Susan Friedlander and Misha M. Vishik,*Instability criteria for steady flows of a perfect fluid*, Chaos**2**(1992), no. 3, 455–460. MR**1184488**, 10.1063/1.165888**[12]**John Guckenheimer and Philip Holmes,*Nonlinear oscillations, dynamical systems, and bifurcations of vector fields*, Applied Mathematical Sciences, vol. 42, Springer-Verlag, New York, 1990. Revised and corrected reprint of the 1983 original. MR**1139515****[13]**Dale Husemoller,*Fibre bundles*, McGraw-Hill Book Co., New York-London-Sydney, 1966. MR**0229247****[14]**V. K. Mel′nikov,*On the stability of a center for time-periodic perturbations*, Trudy Moskov. Mat. Obšč.**12**(1963), 3–52 (Russian). MR**0156048****[15]**Stephen Wiggins,*Introduction to applied nonlinear dynamical systems and chaos*, Texts in Applied Mathematics, vol. 2, Springer-Verlag, New York, 1990. MR**1056699****[16]**E. T. Whittaker and G. N. Watson,*A course of modern analysis*, Macmillan, New York, 1946.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
58F22,
34C25,
58F30,
76E99

Retrieve articles in all journals with MSC: 58F22, 34C25, 58F30, 76E99

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9947-1995-1311905-4

Keywords:
Lyapunov-Schmidt reduction,
resonance,
normal nondegeneracy,
Euler equations,
chaos

Article copyright:
© Copyright 1995
American Mathematical Society