Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Periods for transversal maps via Lefschetz numbers for periodic points

Authors: A. Guillamon, X. Jarque, J. Llibre, J. Ortega and J. Torregrosa
Journal: Trans. Amer. Math. Soc. 347 (1995), 4779-4806
MSC: Primary 58F20
MathSciNet review: 1321576
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ f:M \to M$ be a $ {C^1}$ map on a $ {C^1}$ differentiable manifold. The map $ f$ is called transversal if for all $ m \in \mathbb{N}$ the graph of $ {f^m}$ intersects transversally the diagonal of $ M \times M$ at each point $ (x,x)$ such that $ x$ is a fixed point of $ {f^m}$. We study the set of periods of $ f$ by using the Lefschetz numbers for periodic points. We focus our study on transversal maps defined on compact manifolds such that their rational homology is $ {H_0} \approx \mathbb{Q}$, $ {H_1} \approx \mathbb{Q} \oplus \mathbb{Q}$ and $ {H_k} \approx \{ 0\} $ for $ k \ne 0,1$.

References [Enhancements On Off] (What's this?)

  • [ALM] L. Alsedà, J. Llibre and M. Misiurewicz, Combinatorial dynamics and entropy in dimension one, Advanced Series in Nonlinear Dynamics, Vol. 5, World Scientific, Singapore, 1993. MR 1255515 (95j:58042)
  • [BB] I.K. Babenko and S.A. Bogatyi, The behavior of the index of periodic points under iterations of a mapping, Math. USSR Izv. 38 (1992), 1-26. MR 1130026 (93a:58139)
  • [B] R.F. Brown, The Lefschetz fixed point theorem, Scott, Foresman and Company, Glenview, IL, 1971. MR 0283793 (44:1023)
  • [C1] J.H.E. Cohn, Eight diophantine equations, Proc. London Math. Soc. 16 (1966), 153-166. MR 0190078 (32:7492)
  • [C2] -, The diophantine equation $ {x^4} - D{y^2} = 1$, J. Math. Oxford Ser. 26 (1975), 279-281. MR 0379356 (52:261)
  • [CLN1] J. Casasayas, J. Llibre and A. Nunes, Periodic orbits of transversal maps, preprint, Univ. Autónoma de Barcelona, 1991. MR 1329466 (96c:58138)
  • [CLN2] -, Periods and Lefschetz zeta functions, Pacific J. Math. 165 (1994), 51-66. MR 1285563 (95j:58137)
  • [D] A. Dold, Fixed point indices of iterated maps, Invent. Math. 74 (1983), 419-435. MR 724012 (85c:54077)
  • [F1] J. Franks, Some smooth maps with infinitely many hyperbolic periodic points, Trans. Amer. Math. Soc. 226 (1977), 175-179. MR 0436221 (55:9169)
  • [F2] J. Franks, Homology and dynamical systems, CBMS Regional Conf. Ser. in Math., no. 49, Amer. Math. Soc., Providence, R.I., 1982. MR 669378 (84f:58067)
  • [F3] J. Franks, Period doubling and the Lefschetz formula, Trans. Amer. Math. Soc. 287 (1985), 275-283. MR 766219 (86d:58093)
  • [G] M. Greenberg, Lectures on algebraic topology, Benjamin, Menlo Park, CA, 1971. MR 0215295 (35:6137)
  • [H] B. Halpern, Nielsen type numbers for periodic points (unpublished).
  • [HPY] P. Heath, R. Piccinini and C.Y. You, Nielsen type numbers for periodic points I, Lecture Notes in Math., vol. 1411, Springer, 1989, pp. 88-106. MR 1031786 (90m:55004)
  • [L] W. Ljunggren, Ein Satz über die diophantische Gleichung $ A{x^2} - B{y^4} = C\quad (C = 1,2,4)$, Tolfte Skandinaviska Metematikerkongressen, Lund, 1953, pp. 188-194. MR 0065575 (16:448a)
  • [Ll] J. Llibre, Lefschetz numbers for periodic points, Contemporary Math., vol. 152, Amer. Math. Soc., Providence, RI, 1993, pp. 215-227. MR 1243477 (94g:55002)
  • [M] T. Matsuoka, The number of periodic points of smooth maps, Ergodic Theory Dynamical Systems 9 (1989), 153-163. MR 991495 (90g:58100)
  • [Mo] L.J. Mordell, Diophantine equations, Pure and Applied Mathematics, vol. 30, Academic Press, London, 1969. MR 0249355 (40:2600)
  • [MS] T. Matsuoka and H. Shiraki, Smooth maps with finitely many periodic points, Mem. Fac. Sci. Kochi. Univ. (Math.) 11 (1990), 1-6. MR 1051358 (91g:58222)
  • [N] I. Niven, Irrational numbers, The Carus Math. Monographs, 11, The Math. Assoc. of America, 1956. MR 0080123 (18:195c)
  • [NZ] I. Niven and H.S. Zuckerman, An introduction to the theory of numbers, 4th ed., Wiley, New York, 1980. MR 572268 (81g:10001)
  • [S] A. N. Sharkovskii, Co-existence of a cycles of a continuous map mapping of the line into itself, Ukrain. Math. Zh. 16 (1964), 61-67. (Russian)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 58F20

Retrieve articles in all journals with MSC: 58F20

Additional Information

Keywords: Periods, transversal maps, Lefschetz numbers
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society