Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Invertibility preserving linear maps on $\mathcal L(X)$

Author: A. R. Sourour
Journal: Trans. Amer. Math. Soc. 348 (1996), 13-30
MSC (1991): Primary 47B48, 47B49; Secondary 47A10
MathSciNet review: 1311919
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For Banach spaces $X$ and $Y$, we show that every unital bijective invertibility preserving linear map between $\mathcal L(X)$ and $\mathcal L(Y)$ is a Jordan isomorphism. The same conclusion holds for maps between $\mathbb CI+ \mathcal K(X)$ and $\mathbb CI+\mathcal K(Y)$.

References [Enhancements On Off] (What's this?)

  • 1 B. Aupetit, Propriétés spectrales des algèbres des Banach, Lecture Notes in Math., vol. 735, Springer-Verlag, New York, 1979. MR 81i:46055
  • 2 F. F. Bonsall and J. Duncan, Complete normed algebras, Springer-Verlag, Berlin, 1973. MR 54:11013
  • 3 A. Brown and C. Pearcy, Structure of commutators of operators, Ann. of Math. (2) 82 (1965), 112--127. MR 31:2612
  • 4 M.-D. Choi, D. Hadwin, E. Nordgren, H. Radjavi, and P. Rosenthal, On positive linear maps preserving invertibility, J. Funct. Anal. 59 (1984), 462--469. MR 86a:46071
  • 5 H. DeGuang and B. V. Limaye, On a spectral characterization of rank one matrices, Linear Algebra Appl. 143 (1991), 1--6. MR 91i:15003
  • 6 J. Dieudonné, Sur une généralisation du groupe orthogonal à quatre variables, Arch. Math. 1 (1949), 282--287. MR 10:5861
  • 7 M. Eidelheit, On isomorphisms of rings of linear operators, Studia Math. 9 (1940), 97--105. MR 3:51e
  • 8 A. Gleason, A characterization of maximal ideals, J. Analyse Math. 19 (1967), 171--172. MR 35:4732
  • 9 I. N. Herstein, Topics in ring theory, Univ. of Chicago Press, Chicago, 1969. MR 42:6018
  • 10 A. A. Jafarian and A. R. Sourour, Spectrum preserving linear maps, J. Funct. Anal. 66 1986, 255--261. MR 87m:47011
  • 11 J. P. Kahane and W. Zelazko, A characterization of maximal ideals in commutative Banach algebras, Studia Math. 29 (1968), 339--343. MR 37:1998
  • 12 I. Kaplansky, Algebraic and analytic aspects of operator algebras, Amer. Math. Soc., Providence, RI, 1970. MR 47:845
  • 13 D. R. Larson and A. R. Sourour, Local derivations and local automorphisms of $\mathcal B(X)$, Proc. Sympos. Pure Math., vol. 51, part 2, Amer. Math. Soc., Providence, 1990, pp. 187--194. MR 91k:47106
  • 14 V. Limaye, A spectral characterization of operators having rank $k$, Linear Algebra Appl. 143 (1991), 57--66. MR 92b:47004
  • 15 M. Marcus and R. Purves, Linear transformations on algebras of matrices: The invariance of the elementary symmetric function, Canad. J. Math. 11 (1959), 383--396. MR 21:4167
  • 16 M. Roitman and Y. Sternfeld, When is a linear functional multiplicative?, Trans. Amer. Math. Soc. 267 (1981), 111--124. MR 82j:46061
  • 17 W. Rudin, Functional analysis, 2nd ed., McGraw-Hill, New York, 1991. MR 92k:46001
  • 18 B. Russo, Linear mappings of operator algebras, Proc. Amer. Math. Soc. 17 (1966), 1019--1022. MR 33:6428
  • 19 H. H. Schaefer, Banach lattices and positive operators, Springer-Verlag, Berlin, 1974. MR 54:11023
  • 20 A. R. Sourour, Spectrum preserving linear maps on the algebra of regular operators, Aspects of Positivity in Functional Analysis, Elsevier, 1986, pp. 255--259. MR 88d:47049
  • 21 ------, A factorization theorem for matrices, Linear Multilinear Algebra 19 (1986), 141--147. MR 87j:15028
  • 22 E. C. Titchmarsh, The theory of functions, 2nd ed., Oxford Univ. Press, Oxford, 1939
  • 23 W. Zelazko, acterization of multiplicative linear functionals in complex Banach algebras, Studia Math. 30 (1968), 83--85. MR 37:4620

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 47B48, 47B49, 47A10

Retrieve articles in all journals with MSC (1991): 47B48, 47B49, 47A10

Additional Information

A. R. Sourour
Affiliation: Department of Mathematics and Statistics, University of Victoria, Victoria, B.C. V8W 3P4, Canada

Keywords: Invertibility preserving maps, Jordan homomorphism
Received by editor(s): October 26, 1993
Additional Notes: Supported in part by grants from the Natural Sciences and Engineering Research Council (Canada), and from the University of Victoria
Article copyright: © Copyright 1996 American Mathematical Society

American Mathematical Society