Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Global smooth solutions for a class of
parabolic integrodifferential equations


Author: Hans Engler
Journal: Trans. Amer. Math. Soc. 348 (1996), 267-290
MSC (1991): Primary 45K05
DOI: https://doi.org/10.1090/S0002-9947-96-01472-9
MathSciNet review: 1321573
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The existence and uniqueness of smooth global large data solutions of a class of quasilinear partial integrodifferential equations in one space and one time dimension are proved, if the integral kernel behaves like $t^{-\alpha }$ near $t=0$ with $\alpha > 2/3$. An existence and regularity theorem for linear equations with variable coefficients that are related to this type is also proved in arbitrary space dimensions and with no restrictions for $\alpha $.


References [Enhancements On Off] (What's this?)

  • [1] R. S. Adams, Sobolev Spaces., Academic Press, New York, 1975, MR 56:9247.
  • [2] H. Behrens & P.L. Butzer, Semigroups of Operators and Approximation, Springer, Berlin, Heidelberg, New York, 1967, MR 37:5588.
  • [3] J. Bergh & L. Löfström, Interpolation Spaces, Springer, Berlin, Heidelberg, New York, 1976, MR 58:2349.
  • [4] C.M. Dafermos & J.A. Nohel, A nonlinear hyperbolic Volterra equation in viscoelasticity, Amer. J. Math. Supplement (1981), 87--116, MR 83f:45003.
  • [5] C.M. Dafermos, Development of singularities in the motion of materials with fading memory, Arch Rat. Mech. Anal. 91 (1985), 193--205, MR 87a:73033.
  • [6] ------, Estimates for conservation laws with little viscosity, SIAM J. Appl. Math. 18 (1987), 409--421, MR 88h:35071.
  • [7] G. Da Prato, M. Ianelli & E. Sinestrari, Regularity of solutions of a class of linear integrodifferential equations in Banach spaces, J. Integral Eq. 8 (1985), 27--40, MR 86g:45019.
  • [8] K. Deimling, Nichtlinear Gleichungen und Abbildungsgrade, Springer, Berlin, Heidelberg, New York, 1974, MR 58:17985.
  • [9] H. Engler, Weak solutions of a class of quasilinear hyperbolic integro-differential equations describing viscoelastic materials, Arch. Rat. Mech. Anal. 113 (1990), 1--38, MR 91k:35052.
  • [10] ------, Strong solutions of quasilinear integrodifferential equations with singular kernels in several space dimensions, Electronic J. Differential Eq., vol. 1995, no. 2, pp. (1--16).
  • [11] A. Friedman, Partial Differential Equations, Holt, Rinehart, Winston, New York, 1969, MR 56:3433.
  • [12] R. Gorenflo & S. Vessella, Abel Integral Equations, Springer, Berlin, Heidelberg, New York, Tokyo, 1991, MR 92e:45003.
  • [13] G. Gripenberg, Nonexistence of smooth solutions for shearing flows in a nonlinear viscoelastic fluid, SIAM J. Math. Anal. 13 (1982), 954--961, MR 83m:76007.
  • [14] G. Gripenberg, S.-O. Londen & O. Staffans, Volterra Integral and Functional Equations, Cambridge University Press, Cambridge, 1990, MR 91c:45003.
  • [15] G. Gripenberg, Global existence of solutions of Volterra integrodifferential equations of parabolic type, J. Differential Eq. 102 (1993), 382--390, MR 94e:45007.
  • [16] ------, On the uniqueness and nonuniqueness of weak solutions of hyperbolic-parabolic Volterra equations, Differential Integral Eq. 7 (1994), 509--522, MR 94k:45002.
  • [17] ------, Nonlinear Volterra equations of parabolic type due to singular kernels, J. Differential Eq. 112 (1994), 154--169, MR 95c:45004.
  • [18] ------, Weak solutions of hyperbolic-parabolic Volterra equations, Trans. Amer. Math. Soc. 343 (1994), 675--694, MR 94i:45015.
  • [19] H. Hattori, Breakdown of smooth solutions in dissipative nonlinear hyperbolic equations, Quart. J. Appl. Math. 40 (1982), 113--127, MR 83j:35109.
  • [20] J. Heikonen, On the Existence of a Global Mild Solution for a Nonlinear Parabolic Integro-
    differential Equation
    , Helsinki Univ. of Technology, Espoo, Finland, 1993.
  • [21] W. Hrusa & M. Renardy, On a class of quasilinear partial integrodifferential equations with singular kernels, J. Differential Eq. 64 (1986), 195--220, MR 88c:45010.
  • [22] ------, A model equation for viscoelasticity with a strongly singular kernel, SIAM J. Math. Anal. 19 (1988), 257--269, MR 89d:35159.
  • [23] S. Klainerman & A. Majda, Formation of singularities for wave equations including the nonlinear string equation, Comm. Pure Appl. Math. 33 (1980), 241--263, MR 81f:35080.
  • [24] J.-L. Lions, Quelques Méthodes de Resolution des Problèmes Non-Linéaires, Dunod, Paris, 1969, MR 41:4326.
  • [25] S.-O. Londen, An existence result on a Volterra equation in a Banach space, Trans. Amer. Math. Soc. 235 (1978), 285--304, MR 57:13432.
  • [26] ------, Some existence results for a nonlinear hyperbolic integrodifferential equation with singular kernel, J. Integral Eq. Appl. 3 (1991), 3--30, MR 92a:45035.
  • [27] R. C. MacCamy, Existence, uniqueness and stability of solutions of the equation $u_{tt} = \big ( \sigma (u_x) + \lambda (u_x)u_{xt} \big )_x$, Indiana Univ. Math. J. 20 (1970), 231--238, MR 42:699.
  • [28] J. Prüss & H. Sohr, On operators with bounded imaginary powers in Banach spaces, Math. Z. 203 (1990), 429--452, MR 91b:47030.
  • [29] J. Prüss, Quasilinear parabolic equations in spaces of integrable functions, Semigroup Theory and Evolution Equations (B. de Pagter, Ph. Clément, E. Mitidieri, eds.), Lecture Notes in Pure Appl. Math. 135, Marcel Dekker, New York, 1991, pp. (401--420), MR 92m:47001.
  • [30] ------, Evolutionary Integral Equations and Applications, Birkhäuser, Basel, Boston, Berlin, 1993, MR 94h:45010.
  • [31] M. Renardy, W.E. Hrusa & J.A. Nohel, Mathematical Problems in Viscoelasticity, Longman Group, Boston, London, Melbourne, 1987, MR 89b:35134.
  • [32] M. Renardy, Coercive estimates and existence of solutions for a model of one-dimensional viscoelasticity with a non-integrable memory function, J. Integral Eq. Appl. 1 (1988), 7--16, MR 89k:45009.
  • [33] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, 1970, MR 44:7280.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 45K05

Retrieve articles in all journals with MSC (1991): 45K05


Additional Information

Hans Engler
Email: engler@guvax.acc.georgetown.edu

DOI: https://doi.org/10.1090/S0002-9947-96-01472-9
Keywords: Integrodifferential equation, quasilinear, regular solution, global existence, regularity, singular kernel
Received by editor(s): September 22, 1994
Received by editor(s) in revised form: January 13, 1995
Additional Notes: Supported by the National Science Foundation under grant # DMS-9003543
Article copyright: © Copyright 1996 American Mathematical Society

American Mathematical Society