Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



The spaces of index one minimal surfaces and
stable constant mean curvature surfaces
embedded in flat three manifolds

Authors: Manuel Ritoré and Antonio Ros
Journal: Trans. Amer. Math. Soc. 348 (1996), 391-410
MSC (1991): Primary 53A10; Secondary 49Q20
MathSciNet review: 1322955
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is proved that the spaces of index one minimal surfaces and stable constant mean curvature surfaces with genus greater than one in (non fixed) flat three manifolds are compact in a strong sense: given a sequence of any of the above surfaces we can extract a convergent subsequence of both the surfaces and the ambient manifolds in the $C^k$ topology. These limits preserve the topological type of the surfaces and the affine diffeomorphism class of the ambient manifolds. Some applications to the isoperimetric problem are given.

References [Enhancements On Off] (What's this?)

  • A A.D. Alexandrov, Uniqueness theorems for surfaces in the large, I, Vestnik Leningrad Univ. Math. 11 (1956), no. 19, 5--17; English transl., Amer. Math. Soc. Transl. (2) 21 (1962), 341--353. MR 19:167; MR 27:698a
  • BdC J.L. Barbosa, M. do Carmo, Stability of hypersurfaces with constant mean curvature, Math. Z. 185 (1984), 339--353. MR 85k:58021c
  • BdCE J.L. Barbosa, M. do Carmo, J. Eschenburg, Stability of hypersurfaces with constant mean curvature in Riemannian manifolds, Math. Z. 197 (1988), 123--138. MR 88m:53109
  • dCP M. do Carmo, C.K. Peng, Stable complete minimal surfaces in $\r^3$ are planes, Bull. Amer. Math. Soc. (N.S.) 1 (1979), 903--906. MR 80j:53012
  • EI A. El Soufi, S. Ilias, Majoration de la seconde valeur propre d'un opérateur de Schrödinger sur une variété compacte et applications, J. Funct. Anal. 103 (1992), 294--316. MR 93g:58150
  • FC D. Fischer--Colbrie, On complete minimal surfaces with finite Morse index in three--manifolds, Invent. Math. 82 (1985), 121--132. MR 87b:53090
  • FCS D. Fischer--Colbrie, R. Schoen, The structure of complete stable minimal surfaces in $3$--manifolds of non--negative scalar curvature, Comm. Pure Appl. Math. 33 (1980), 199--211. MR 81i:53044
  • Fr K. Frensel, Stable complete surfaces with constant mean curvature, An. Acad. Brasil. Ciênc. 60 (1988), 115--117. MR 90c:53019
  • GH P. Griffiths, J. Harris, Principles of Algebraic Geometry, Pure and Applied Math., Wiley--Interscience, New York, 1978. MR 80b:14001
  • HPR J. Hass, J.T. Pitts, J.H. Rubinstein, Existence of unstable minimal surfaces in manifolds with homology and applications to triply periodic minimal surfaces, Proceedings of Symposia in Pure Mathematics, vol. 54, part 1, Amer. Math. Soc., 1993, pp. 147--162. MR 94j:53007
  • H E. Heintze, Extrinsic upper bounds for $\lambda_{1}$, Math. Ann. 280 (1988), 389--402. MR 89f:53091
  • HM D. Hoffman, W.H. Meeks, Limits of minimal surfaces and Scherk's second surface, Univ. Massachusetts.
  • HM1 D. Hoffman, W.H. Meeks, The strong halfspace theorem for minimal surfaces, Invent. Math. 101 (1990), 373--377. MR 92e:53010
  • Kar H. Karcher, The triply periodic minimal surfaces of Alan Schoen and their constant mean curvature companions, Manuscripta Math. 64 (1989), 291--357. MR 90g:53010
  • KKS N.J. Korevaar, R. Kusner, B. Solomon, The structure of complete embedded surfaces with constant mean curvature, J. Differential Geom. 30 (1989), 465--503. MR 90g:53011
  • LR F.J. López, A. Ros, Complete minimal surfaces with index one and stable constant mean curvature surfaces, Comment. Math. Helv. 64 (1989), 34--43. MR 90b:53006
  • M W.H. Meeks, The theory of triply periodic minimal surfaces, Indiana U. Math. J. 39 (1990), 877--936. MR 92e:53012
  • MR1 W.H. Meeks, H. Rosenberg, The global theory of doubly periodic minimal surfaces, Invent. Math. 97 (1989), 351--379. MR 90m:53017
  • MR2 W.H. Meeks, H. Rosenberg, The geometry of periodic minimal surfaces, Comment. Math. Helv. 68 (1993), 538--579. MR 95a:53011
  • MoR S. Montiel, A. Ros, Schrödinger operators associated to a holomorphic map, Proceedings Conference on Global Differential Geometry and Global Analysis, Lecture Notes in Mathematics 1481, Berlin, 1991, 147--174. MR 93k:58053
  • P J.T. Pitts, Existence and regularity of minimal surfaces on Riemannian manifolds, Mathematical Notes 27, Princeton University Press, Princeton, 1981. MR 83e:49079
  • PR J.T. Pitts, J.H. Rubinstein, Equivariant minimax and minimal surfaces in geometric three--manifolds, Bull. Amer. Math. Soc. (N.S.) 19 (1988), 303--309. MR 90a:53014
  • R M. Ritoré, Complete orientable index one minimal surfaces embedded in complete orientable flat three manifolds, preprint, Univ. Granada, 1994.
  • RR M. Ritoré, A. Ros, Stable constant mean curvature tori and the isoperimetric problem in three space forms, Comment. Math. Helv. 67 (1992), 293--305. MR 93a:53055
  • Ro M. Ross, Schwarz's ${\cal P}$ and ${\cal D}$ surfaces are stable, Differential Geom. Appl. 2 (1992), 179--195. MR 94j:53010
  • Sc R. Schoen, Uniqueness, symmetry and embeddedness of minimal surfaces, J. Differential Geom. 18 (1983), 791--809. MR 85f:53011
  • S A. da Silveira, Stability of complete noncompact surfaces with constant mean curvature, Math. Ann. 277 (1987), 629--638. MR 88h:53053
  • W B. White, Curvature estimates and compactness theorems in $3$--manifolds for surfaces that are stationary for parametric elliptic functionals, Invent. Math. 88 (1987), 243--256. MR 88g:58037
  • Wo J.A. Wolf, Spaces of constant curvature, 1st ed., Publish or Perish, Inc., 1984.
  • Y S.T. Yau, Nonlinear analysis in geometry, L'Enseignement Math. 33 (1987), 109--158. MR 88g:58003

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 53A10, 49Q20

Retrieve articles in all journals with MSC (1991): 53A10, 49Q20

Additional Information

Manuel Ritoré
Affiliation: Departamento de Geometría y Topología Universidad de Granada E–18071, Granada, Spain

Antonio Ros
Affiliation: Departamento de Geometría y Topología Universidad de Granada E–18071, Granada, Spain

Keywords: Minimal surfaces, constant mean curvature surfaces, index one, stability, isoperimetric problem
Received by editor(s): November 18, 1994
Received by editor(s) in revised form: March 27, 1995
Additional Notes: Both authors partially supported by DGICYT grant PB91–0731
Communicated by: Wolmer V. Vasconecelos
Article copyright: © Copyright 1996 American Mathematical Society

American Mathematical Society