Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

   
 
 

 

Uniqueness theorems in inverse spectral theory for one-dimensional Schrödinger operators


Authors: F. Gesztesy and B. Simon
Journal: Trans. Amer. Math. Soc. 348 (1996), 349-373
MSC (1991): Primary 34B24, 34L05, 81Q10; Secondary 34B20, 47A10
DOI: https://doi.org/10.1090/S0002-9947-96-01525-5
MathSciNet review: 1329533
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: New unique characterization results for the potential $V(x)$ in connection with Schrödinger operators on $\mathbb{R}$ and on the half-line $[0,\infty )$ are proven in terms of appropriate Krein spectral shift functions. Particular results obtained include a generalization of a well-known uniqueness theorem of Borg and Marchenko for Schrödinger operators on the half-line with purely discrete spectra to arbitrary spectral types and a new uniqueness result for Schrödinger operators with confining potentials on the entire real line.


References [Enhancements On Off] (What's this?)

  • 1 S. Albeverio, F. Gesztesy, R. Høegh-Krohn, and H. Holden, Solvable Models in Quantum Mechanics, Springer, New York, 1988, MR 90a:81021.
  • 2 N. Aronszajn and W.F. Donoghue, On exponential representations of analytic functions in the upper half-plane with positive imaginary part, J. Anal. Math. 5 (1957), 321--388.
  • 3 F.V. Atkinson, On the location of the Weyl circles, Proc. Roy. Soc. Edinburgh 88A (1981), 345--356, MR 83a:34023.
  • 4 G. Borg, Eine Umkehrung der Sturm-Liouvilleschen Eigenwertaufgabe, Acta Math. 78
    (1946), 1--96, MR 7:382d.
  • 5 ------, Uniqueness theorems in the spectral theory of $y''+(\lambda -q(x))y=0$, Proc. 11th Scandinavian Congress of Mathematicians, Johan Grundt Tanums Forlag, Oslo, 1952, pp. (276--287), MR 15:315a.
  • 6 E.A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, Krieger, Malabar, 1985.
  • 7 W. Craig, The trace formula for Schrödinger operators on the line, Commun. Math. Phys. 126 (1989), 379--407, MR 90m:47063.
  • 8 P. Deift and E. Trubowitz, Inverse scattering on the line, Commun. Pure Appl. Math. 32 (1979), 121--251, MR 80e:34011.
  • 9 B.A. Dubrovin, Periodic problems for the Korteweg-de Vries equation in the class of finite band potentials, Funct. Anal. Appl. 9 (1975), 215-223, MR 58:6480.
  • 10 N. Dunford and J.T. Schwartz, Linear Operators, Part II. Spectral Theory, Wiley, New York, 1988, MR 90g:47001b.
  • 11 W.N. Everitt, On a property of the $m$-coefficient of a second-order linear differential equation, J. London Math. Soc. 4 (1972), 443--457, MR 45:7156.
  • 12 H. Flaschka, On the inverse problem for Hill's operator, Arch. Rat. Mech. Anal. 59 (1975), 293--309, MR 52:8550.
  • 13 I.M. Gel$'$fand and B.M. Levitan, On the determination of a differential equation from its spectral function, Amer. Math. Soc. Transl. (2) 1 (1955), 253--304 (Russian), English transl. in, MR 17:489c.
  • 14 F. Gesztesy and H. Holden, On new trace formulae for Schrödinger operators, Acta Applicandae Math. 39 (1995), 315--333.
  • 15 F. Gesztesy and B. Simon, The xi function, Acta Math. (to appear).
  • 16 ------, Rank one perturbations at infinite coupling, J. Funct. Anal. 128 (1995), 245--252.
  • 17 F. Gesztesy, H. Holden, and B. Simon, Absolute summability of the trace relation for certain Schrödinger operators, Commun. Math. Phys. 168 (1995), 137--161.
  • 18 F. Gesztesy, B. Simon, and G. Teschl, work in preparation.
  • 19 F. Gesztesy, H. Holden, B. Simon, and Z. Zhao, Trace formulae and inverse spectral theory for Schrödinger operators, Bull. Amer. Math. Soc. 29 (1993), 250--255, MR 94c:34127.
  • 20 ------, Higher order trace relations for Schrödinger operators, Rev. Math. Phys. (to appear).
  • 21 H. Grosse and A. Martin, Theory of the inverse problem for confining potentials (I). Zero angular momentum, Nucl. Phys. B148 (1979), 413--432.
  • 22 H. Hochstadt, On the determination of a Hill's equation from its spectrum, Arch. Rat. Mech.
    Anal. 19 (1965), 353--362, MR 31:6019.
  • 23 V.A. Javrjan, On the regularized trace of the difference between two singular Sturm-Liouville operators, Soviet Math. Dokl. 7 (1966), 888--891, MR 34:1883.
  • 24 ------, A certain inverse problem for Sturm-Liouville operators, Izv. Akad. Nauk Armjan. SSR Ser. Mat. 6 (1971), 246--251 (Russian), MR 46:723.
  • 25 A. Kiselev and B. Simon, Rank one perturbations with infinitesimal coupling, J. Funct. Anal. 130 (1995), 345--356.
  • 26 S. Kotani and M. Krishna, Almost periodicity of some random potentials, J. Funct. Anal. 78 (1988), 390--405, MR 89i:60133.
  • 27 M.G. Krein, Perturbation determinants and a formula for the traces of unitary and self-adjoint operators, Soviet Math. Dokl. 3 (1962), 707--710.
  • 28 B.M. Levitan, On the closure of the set of finite-zone potentials, Math. USSR Sbornik 51 (1985), 67--89, MR 25:2446.
  • 29 ------, Inverse Sturm-Liouville Problems, VNU Science Press, Utrecht, 1987 , MR 89b:34001.
  • 30 B.M. Levitan and M.G. Gasymov, Determination of a differential equation by two of its spectra, Russian Math. Surveys 19:2 (1964), 1--63, MR 29:299.
  • 31 B.M. Levitan and I.S. Sargsjan, Introduction to Spectral Theory, Amer. Math. Soc., Providence, RI, 1975, MR 51:6026.
  • 32 V.A. Marchenko, Some questions in the theory of one-dimensional linear differential operators of the second order, I, Amer. Math. Soc. Transl. (2) 101 (1973), 1--104 (Russian), English transl. in, MR 15:315.
  • 33 ------, Sturm-Liouville Operators and Applications, Birkhäuser, Basel, 1986 , MR 88f:34034.
  • 34 H.P. McKean and P. van Moerbeke, The spectrum of Hill's equation, Invent. Math. 30 (1975), 217--274, MR 53:936.
  • 35 H.P. McKean and E. Trubowitz, Hill's operator and hyperelliptic function theory in the presence of infinitely many branch points, Commun. Pure Appl. Math. 29 (1976), 143--226, MR 55:761.
  • 36 D.B. Pearson, Quantum Scattering and Spectral Theory, Academic Press, London, 1988, MR 91k:81198.
  • 37 M. Reed and B. Simon, Methods of Modern Mathematical Physics, II. Fourier Analysis, Self-Adjointness, Academic Press, New York, 1975, MR 58:12429b.
  • 38 B. Simon, Spectral analysis of rank one perturbations and applications, Mathematical Quantum Theory II: Schrödinger Operators (J. Feldman, R. Froese, L.M. Rosen, eds.), Conf. Proc. Canad. Math. Soc., vol. 8, Amer. Math. Soc., Providence, RI, 1995, pp. (109--149).
  • 39 E. Trubowitz, The inverse problem for periodic potentials, Commun. Pure Appl. Math. 30 (1977), 321--337, MR 55:3408.
  • 40 S. Venakides, The infinite period limit of the inverse formalism for periodic potentials, Commun. Pure Appl. Math. 41 (1988), 3--17, MR 88j:34055.
  • 41 J. Zorbas, Perturbation of self-adjoint operators by Dirac distributions, J. Math. Phys. 21 (1980), 840--847, MR 83b:81035.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 34B24, 34L05, 81Q10, 34B20, 47A10

Retrieve articles in all journals with MSC (1991): 34B24, 34L05, 81Q10, 34B20, 47A10


Additional Information

F. Gesztesy
Email: mathfg@mizzou1.missouri.edu

DOI: https://doi.org/10.1090/S0002-9947-96-01525-5
Keywords: Schrdinger operators, inverse spectral theory, Krein's spectral shift function
Received by editor(s): February 27, 1995
Additional Notes: This material is based upon work supported by the National Science Foundation under Grant No. DMS-9101715. The U.S. Government has certain rights in this material.
Article copyright: © Copyright 1996 by the authors

American Mathematical Society