Harmonic Bergman Functions on HalfSpaces
Authors:
Wade C. Ramey and HeungSu Yi
Journal:
Trans. Amer. Math. Soc. 348 (1996), 633660
MSC (1991):
Primary 31B05; Secondary 31B10, 30D55, 30D45
MathSciNet review:
1303125
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We study harmonic Bergman functions on the upper halfspace of . Among our main results are: The Bergman projection is bounded for the range ; certain nonorthogonal projections are bounded for the range ; the dual space of the Bergman space is the harmonic Bloch space modulo constants; harmonic conjugation is bounded on the Bergman spaces for the range ; the Bergman norm is equivalent to a ``normal derivative norm'' as well as to a ``tangential derivative norm''.
 1.
Lars
V. Ahlfors, Some remarks on Teichmüller’s space of
Riemann surfaces, Ann. of Math. (2) 74 (1961),
171–191. MR 0204641
(34 #4480)
 2.
H. Ajmi and W. Ramey, Harmonic Bloch functions on the upper half space (to appear).
 3.
Sheldon
Axler, Bergman spaces and their operators, Surveys of some
recent results in operator theory, Vol. I, Pitman Res. Notes Math. Ser.,
vol. 171, Longman Sci. Tech., Harlow, 1988, pp. 1–50. MR 958569
(90b:47048)
 4.
Sheldon
Axler, Paul
Bourdon, and Wade
Ramey, Harmonic function theory, Graduate Texts in
Mathematics, vol. 137, SpringerVerlag, New York, 1992. MR 1184139
(93f:31001)
 5.
C.
Fefferman and E.
M. Stein, 𝐻^{𝑝} spaces of several variables,
Acta Math. 129 (1972), no. 34, 137–193. MR 0447953
(56 #6263)
 6.
Frank
Forelli and Walter
Rudin, Projections on spaces of holomorphic functions in
balls, Indiana Univ. Math. J. 24 (1974/75),
593–602. MR 0357866
(50 #10332)
 7.
G. H. Hardy and J. E. Littlewood, Some properties of conjugate functions, J. Reine Angew. Math. 167 (1931), 405423
 8.
H. S. Shapiro, Global geometric aspects of Cauchy's problem for the Laplace operator, research report TRITAMAT198937, Royal Inst. Tech., Stockholm.
 9.
A.
L. Shields and D.
L. Williams, Bonded projections, duality, and
multipliers in spaces of analytic functions, Trans. Amer. Math. Soc. 162 (1971), 287–302. MR 0283559
(44 #790), http://dx.doi.org/10.1090/S00029947197102835593
 10.
Elias
M. Stein, Singular integrals and differentiability properties of
functions, Princeton Mathematical Series, No. 30, Princeton University
Press, Princeton, N.J., 1970. MR 0290095
(44 #7280)
 11.
Elias
M. Stein and Guido
Weiss, Introduction to Fourier analysis on Euclidean spaces,
Princeton University Press, Princeton, N.J., 1971. Princeton Mathematical
Series, No. 32. MR 0304972
(46 #4102)
 12.
Ke
He Zhu, Operator theory in function spaces, Monographs and
Textbooks in Pure and Applied Mathematics, vol. 139, Marcel Dekker,
Inc., New York, 1990. MR 1074007
(92c:47031)
 1.
 L. Ahlfors, Some remarks on Teichmüller's space of Riemann surfaces, Ann. of Math. 74 (1961), 171191. MR 34:4480
 2.
 H. Ajmi and W. Ramey, Harmonic Bloch functions on the upper half space (to appear).
 3.
 S. Axler, Bergman spaces and their operators, Surveys of Some Recent Results in Operator Theory, Vol. 1, Pitman Research Notes in Math. 171, Pitman, 1988, pp. 150. MR 90b:47048
 4.
 S. Axler, P. Bourdon and W. Ramey, Harmonic function theory, SpringerVerlag, New York, 1992. MR 93f:31001
 5.
 C. Fefferman and E. Stein, spaces of several variables, Acta Math. 129 (1972), 137193. MR 56:6263
 6.
 F. Forelli and W. Rudin, Projections on spaces of holomorphic functions in balls, Indiana Univ. Math. J. 24 (1974), 593602. MR 50:10332
 7.
 G. H. Hardy and J. E. Littlewood, Some properties of conjugate functions, J. Reine Angew. Math. 167 (1931), 405423
 8.
 H. S. Shapiro, Global geometric aspects of Cauchy's problem for the Laplace operator, research report TRITAMAT198937, Royal Inst. Tech., Stockholm.
 9.
 A. Shields and D. Williams, Bounded projections, duality, and multipliers in spaces of analytic functions, Trans. Amer. Math. Soc. 162 (1971), 287302. MR 44:790
 10.
 E. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, NJ, 1970. MR 44:7280
 11.
 E. Stein and G. Weiss, Fourier analysis on Euclidean spaces, Princeton Univ. Press, Princeton, NJ, 1971. MR 46:4102
 12.
 K. Zhu, Operator theory in function spaces, Marcel Dekker, New York and Basel, 1990. MR 92c:47031
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC (1991):
31B05,
31B10,
30D55,
30D45
Retrieve articles in all journals
with MSC (1991):
31B05,
31B10,
30D55,
30D45
Additional Information
Wade C. Ramey
Affiliation:
Department of Mathematics, Michigan State University, East Lansing, Michigan 488241027
Email:
ramey@math.msu.edu
HeungSu Yi
Affiliation:
Global Analysis Research Center, Department of Mathematics, Seoul National University, Seoul, Korea #151742
Email:
hsyi@math.snu.ac.kr
DOI:
http://dx.doi.org/10.1090/S0002994796013839
PII:
S 00029947(96)013839
Keywords:
Bergman kernel,
projection operators,
dual spaces,
harmonic Bloch space
Received by editor(s):
October 13, 1994
Article copyright:
© Copyright 1996
American Mathematical Society
