Regularity theory and traces

of -harmonic functions

Authors:
Pekka Koskela, Juan J. Manfredi and Enrique Villamor

Journal:
Trans. Amer. Math. Soc. **348** (1996), 755-766

MSC (1991):
Primary 35B65; Secondary 31B25

MathSciNet review:
1311911

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we discuss two different topics concerning -

harmonic functions. These are weak solutions of the partial differential equation

where for some fixed , the function is bounded and for a.e. . First, we present a new approach to the regularity of -harmonic functions for . Secondly, we establish results on the existence of nontangential limits for -harmonic functions in the Sobolev space , for some , where is the unit ball in . Here is allowed to be different from .

- [
**B**] A. Beurling,*Ensembles exceptionnels*, Acta Math.**72**(1940), 1--13. - [
**BI**] B. Bojarski and T. Iwaniec,*Analytical foundations of the theory of quasiconformal mappings in 𝑅ⁿ*, Ann. Acad. Sci. Fenn. Ser. A I Math.**8**(1983), no. 2, 257–324. MR**731786**, 10.5186/aasfm.1983.0806 - [
**C**] Lennart Carleson,*Selected problems on exceptional sets*, Van Nostrand Mathematical Studies, No. 13, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR**0225986** - [
**G**] Seppo Granlund,*Harnack’s inequality in the borderline case*, Ann. Acad. Sci. Fenn. Ser. A I Math.**5**(1980), no. 1, 159–163. MR**595186**, 10.5186/aasfm.1980.0507 - [
**GLM**] S. Granlund, P. Lindqvist, and O. Martio,*Conformally invariant variational integrals*, Trans. Amer. Math. Soc.**277**(1983), no. 1, 43–73. MR**690040**, 10.1090/S0002-9947-1983-0690040-4 - [
**HKM**] Juha Heinonen, Tero Kilpeläinen, and Olli Martio,*Nonlinear potential theory of degenerate elliptic equations*, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1993. Oxford Science Publications. MR**1207810** - [
**H**] Ilkka Holopainen,*Nonlinear potential theory and quasiregular mappings on Riemannian manifolds*, Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes**74**(1990), 45. MR**1052971** - [
**KK**] T. Kilpeläinen and P. Koskela,*Global integrability of gradients of solutions to partial differential equations*, Nonlinear Anal.**23**(1994), 899--909, MR**95:03**. - [
**LM**] P. Lindqvist and J. Manfredi,*The Harnack inequality for -harmonic functions*, Elec. J. Differential Equations, vol. 1995, n. 4, 1--5. - [
**ML**] G. R. MacLane,*Holomorphic functions, of arbitrarily slow growth, without radial limits*, Michigan Math. J.**9**(1962), 21--24, MR**25:203**. - [
**M**] J. J. Manfredi,*Monotone Sobolev functions*, J. Geom. Anal.**4**(1994), 393--402. - [
**MV**] J. J. Manfredi and E. Villamor,*Traces of monotone Sobolev functions*, J. Geom. Anal. (to appear). - [
**MR**] O. Martio and S. Rickman,*Boundary behavior of quasiregular mappings*, Ann. Acad. Sci. Fenn. Ser. A I**507**(1972), 17. MR**0379846** - [
**Mi1**] Yoshihiro Mizuta,*Existence of various boundary limits of Beppo Levi functions of higher order*, Hiroshima Math. J.**9**(1979), no. 3, 717–745. MR**549670** - [
**Mi2**] Yoshihiro Mizuta,*Boundary behavior of 𝑝-precise functions on a half space of 𝑅ⁿ*, Hiroshima Math. J.**18**(1988), no. 1, 73–94. MR**935884** - [
**Mi3**] Yoshihiro Mizuta,*On the boundary limits of harmonic functions with gradient in 𝐿^{𝑝}*, Ann. Inst. Fourier (Grenoble)**34**(1984), no. 1, 99–109 (English, with French summary). MR**743623** - [
**NRS**] Alexander Nagel, Walter Rudin, and Joel H. Shapiro,*Tangential boundary behavior of functions in Dirichlet-type spaces*, Ann. of Math. (2)**116**(1982), no. 2, 331–360. MR**672838**, 10.2307/2007064 - [
**R**] Ju. G. Rešetnjak,*The boundary behavior of functions with generalized derivatives*, Sibirsk. Mat. Ž.**13**(1972), 411–419 (Russian). MR**0296687** - [
**S**] James Serrin,*Local behavior of solutions of quasi-linear equations*, Acta Math.**111**(1964), 247–302. MR**0170096** - [
**V**] Matti Vuorinen,*Conformal geometry and quasiregular mappings*, Lecture Notes in Mathematics, vol. 1319, Springer-Verlag, Berlin, 1988. MR**950174** - [
**Z**] William P. Ziemer,*Weakly differentiable functions*, Graduate Texts in Mathematics, vol. 120, Springer-Verlag, New York, 1989. Sobolev spaces and functions of bounded variation. MR**1014685**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (1991):
35B65,
31B25

Retrieve articles in all journals with MSC (1991): 35B65, 31B25

Additional Information

**Pekka Koskela**

Affiliation:
Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109

Email:
pkoskela@math.jyu.fi

**Juan J. Manfredi**

Affiliation:
Department of Mathematics and Statistics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260

Email:
manfredit@pitt.edu

**Enrique Villamor**

Affiliation:
Department of Mathematics, Florida International University, Miami, Florida 33199

Email:
villamor@fiu.edu

DOI:
https://doi.org/10.1090/S0002-9947-96-01430-4

Received by editor(s):
June 7, 1994

Received by editor(s) in revised form:
January 23, 1995

Additional Notes:
Research of the first author was partially supported by the Academy of Finland and NSF grant DMS-9305742

Research of the second author was partially supported by NSF grant DMS-9101864

Article copyright:
© Copyright 1996
American Mathematical Society