Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Characterizations of generalized Hermite and
sieved ultraspherical polynomials

Author: Holger Dette
Journal: Trans. Amer. Math. Soc. 348 (1996), 691-711
MSC (1991): Primary 33C45
MathSciNet review: 1311912
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A new characterization of the generalized Hermite polyno-
mials and of the orthogonal polynomials with respect to the measure
$|x|^\gamma (1-x^2)^{1/2}dx$ is derived which is based on a ``reversing property" of the coefficients in the corresponding recurrence formulas and does not use the representation in terms of Laguerre and Jacobi polynomials. A similar characterization can be obtained for a generalization of the sieved ultraspherical polynomials of the first and second kind. These results are applied in order to determine the asymptotic limit distribution for the zeros when the degree and the parameters tend to infinity with the same order.

References [Enhancements On Off] (What's this?)

  • 1. M. Abramowitz and I. Stegun. Handbook of mathematical functions, Dover, New York, 1964.
  • 2. W. Al-Salam, W. R. Allaway and R. Askey, Sieved ultraspherical polynomials, Trans. Amer. Math. Soc. 284 (1984), 39--55. MR 85j:33005
  • 3. W. Al-Salam, Characterization theorems for orthogonal polynomials, Orthogonal Polynomials: Theory and Practice (P. Nevai, ed.), NATO ASI Series C 294, Kluwer, Dordrecht, 1990, pp. 1--24. MR 92g:42011
  • 4. R. Askey, Orthogonal polynomials old and new, and some combinatorial connections, Enumeration and Design (D. M. Jackson and S. A. Vanstone , eds.), Academic Press, New York, 1984, pp. 67--84. MR 87a:05022
  • 5. J. A. Charris and M. E. H. Ismail, On sieved orthogonal polynomials II: Random walk polynomials, Canad. J. Math. 38 (1986), 397--415. MR 87j:33014a
  • 6. ------, Sieved orthogonal polynomials VII: Generalized polynomial mappings, Trans. Amer. Math. Soc. 340 (1993), 71--93. MR 94a:33007
  • 7. J. A. Charris, M. E. H. Ismail and S. Monsalve, On sieved orthogonal polynomials X: General blocks of recurrence relations, Pacific. J. Math. 163 (1994), 237--267. MR 95d:33004
  • 8. T. S. Chihara, Introduction to orthogonal polynomials, Gordon & Breach, New York, 1978. MR 58:1979
  • 9. H. Dette and W. J. Studden, On a new characterization of the classical orthogonal polynomials, J. Approx. Theory 71 (1992), 3--17. MR 93k:33005
  • 10. W. Gawronski, Strong asymptotics and asymptotic zero distribution of Laguerre polynomials $L_n^{(an+\alpha)}(x)$ and Hermite polynomials $H_n^{(an+\alpha)}(x)$, Analysis 13 (1993), 29--68. MR 95d:30010
  • 11. J. S. Geronimo and W. VanAssche, Orthogonal polynomials on several intervals via a polynomial mapping, Trans. Amer. Math. Soc. 308 (1988), 559--581. MR 89f:42021
  • 12. M. E. H. Ismail, On sieved orthogonal polynomials III: Orthogonality on several intervals, Trans. Amer. Math. Soc. 294 (1986), 89--111. MR 87j:33014b
  • 13. S. Karlin and W. J. Studden, Tchebyscheff systems with applications in analysis and statistics, Interscience, New York, 1966. MR 34:4757
  • 14. T. S. Lau and W. J. Studden, On an extremal problem of Fejér, J. Approx. Theory 53 (1988), 184--194. MR 89h:41007
  • 15. O. Perron, Die Lehre von den Kettenbrüchen (Band I and II), Teubner, Stuttgart, 1954; 1957. MR 16:239e;MR 19:25c
  • 16. L. J. Rogers, Third memoir on the expansion of certain infinite products, Proc. London Math. Soc. 26 (1895), 15--32.
  • 17. G. Szegö, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., vol. 23, Providence, RI, 1975. MR 51:8724
  • 18. W. VanAssche, Asymptotics for orthogonal polynomials, Lecture Notes in Math., vol. 1265, Springer-Verlag, Berlin and New York, 1987. MR 88i:42035
  • 19. H. S. Wall, Analytic theory of continued fractions, Van Nostrand, New York, 1948. MR 10:33a

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 33C45

Retrieve articles in all journals with MSC (1991): 33C45

Additional Information

Holger Dette
Affiliation: Institut für Mathematische Stochastik, Technische Universität Dresden Mommsenstr. 13, 01062 Dresden, Germany

Keywords: Generalized Hermite polynomials, sieved ultraspherical polynomials, Stieltjes transform, continued fractions, asymptotic zero distribution
Received by editor(s): June 5, 1994
Received by editor(s) in revised form: January 10, 1995
Article copyright: © Copyright 1996 American Mathematical Society

American Mathematical Society