Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Even Linkage Classes


Author: Scott Nollet
Journal: Trans. Amer. Math. Soc. 348 (1996), 1137-1162
MSC (1991): Primary 14M06; Secondary 14M12, 13C40
DOI: https://doi.org/10.1090/S0002-9947-96-01552-8
MathSciNet review: 1340182
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we generalize the $ \mathcal{E}$ and $ \mathcal{N}$-type resolutions used by Martin-Deschamps and Perrin for curves in $ \mathbb{P}^{3}$ to subschemes of pure codimension in projective space, and shows that these resolutions are interchanged by the mapping cone procedure under a simple linkage. Via these resolutions, Rao's correspondence is extended to give a bijection between even linkage classes of subschemes of pure codimension two and stable equivalence classes of reflexive sheaves $ \mathcal{E}$ satisfying $H^{1}_{*}( \mathcal{E})=0$ and $ \mathop{\mathcal{E}xt}^{1}( \mathcal{E}^{\vee }, \mathcal{O})=0$. Further, these resolutions are used to extend the work of Martin-Deschamps and Perrin for Cohen-Macaulay curves in $ \mathbb{P}^{3}$ to subschemes of pure codimension two in $ \mathbb{P}^{n}$. In particular, even linkage classes of such subschemes satisfy the Lazarsfeld-Rao property and any minimal subscheme for an even linkage class links directly to a minimal subscheme for the dual class.


References [Enhancements On Off] (What's this?)

  • 1. E. Ballico, G. Bolondi and J. Migliore, The Lazarsfeld-Rao problem for liaison classes of two-codimensional subschemes of ${{\mathbb P} }^n $, Amer J. Math. 113 (1991), 117-128. MR 92c:14047
  • 2. G. Bolondi and J. Migliore, The Structure of an Even Liaison Class, Trans. Amer. Math. Soc. 316 (1989), 1-37. MR 90b:14060
  • 3. A. Grothendieck, Eléments de Géométrie Algébrique IV, Inst. Hautes Études Sci. Publ. Math. 28 (1966). MR 36:178
  • 4. R. Hartshorne, Ample Subvarieties of Algebraic Varieties, Lecture Notes in Math., vol. 156, Springer, 1970. MR 44:211
  • 5. R. Hartshorne, Algebraic Geometry, Springer-Verlag, Berlin, Heidelberg and New York, 1977. MR 57:3116
  • 6. R. Hartshorne, Stable Reflexive Sheaves, Math. Ann. 254 (1980), 121-176. MR 82b:14011
  • 7. R. Hartshorne, Generalized Divisors on Gorenstein Schemes, K-Theory 8 (1994), 287-339. CMP 94:17
  • 8. S. Kleiman, Geometry on Grassmanians and applications to splitting bundles and smoothing cycles, Inst. Hautes Études Sci. Publ. Math. 36 (1969), 281-298. MR 42:281
  • 9. R. Lazarsfeld and A. P. Rao, Linkage of General Curves of Large Degree, Lecture Notes in Math., vol. 997, Springer, 1983, pp. 267-289. MR 85d:14043
  • 10. M. Martin-Deschamps and D. Perrin, Sur la Classification des Courbes Gauches, Astérisque 184-185, 1990. MR 91h:14039
  • 11. M. Martin-Deschamps and D. Perrin, Construction de Courbes Lisses: un Théorème de Bertini, vol. 22, Laboratoire de Mathématiques de l'Ecole Normale Supérieure, 1992.
  • 12. Hideyuki Matsumura, Commutative Ring Theory, Cambridge University Press, 1986. MR 88h:13001
  • 13. J. Migliore, An Introduction to Deficiency Modules and Liaison Theory for Subschemes of Projective Space, Global Analysis Research Center, Seoul National University, Lecture Notes Series 24 (1994). CMP 95:03
  • 14. C. Peskine and L. Szpiro, Liaison des variétés algébriques, I, Inventiones Math. 26 (1972), 271-302. MR 51:526
  • 15. A. P. Rao, Liaison Among Curves in ${{\mathbb P} }^3 $, Inventiones Math. 50 (1979), 205-217. MR 80e:14023
  • 16. A. P. Rao, Liaison Equivalence Classes, Math. Ann. 258 (1981), 169-173. MR 83j:14045

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 14M06, 14M12, 13C40

Retrieve articles in all journals with MSC (1991): 14M06, 14M12, 13C40


Additional Information

Scott Nollet
Affiliation: 2919 Fulton St., Berkeley, California 94705
Email: nollet@math.berkeley.edu

DOI: https://doi.org/10.1090/S0002-9947-96-01552-8
Keywords: Even linkage classes, Lazarsfeld-Rao property, Rao's correspondence
Received by editor(s): March 6, 1995
Article copyright: © Copyright 1996 American Mathematical Society

American Mathematical Society