Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Geometrizing Infinite Dimensional Locally Compact Groups


Author: Conrad Plaut
Journal: Trans. Amer. Math. Soc. 348 (1996), 941-962
MSC (1991): Primary 53C70, 22D05; Secondary 22E65
DOI: https://doi.org/10.1090/S0002-9947-96-01592-9
MathSciNet review: 1348156
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study groups having invariant metrics of curvature bounded below in the sense of Alexandrov. Such groups are a generalization of Lie groups with invariant Riemannian metrics, but form a much larger class. We prove that every locally compact, arcwise connected, first countable group has such a metric. These groups may not be (even infinite dimensional) manifolds. We show a number of relationships between the algebraic and geometric structures of groups equipped with such metrics. Many results do not require local compactness.


References [Enhancements On Off] (What's this?)

  • 1. Alexandrov, A.D., Die innere Geometrie der konvexen Flächen, Akad. Verl., Berlin, 1955. MR 17:74
  • 2. A. D. Aleksandrov, V. N. Berestovskiĭ, and I. G. Nikolaev, Generalized Riemannian spaces, Uspekhi Mat. Nauk 41 (1986), no. 3(249), 3–44, 240 (Russian). MR 854238
  • 3. V. N. Berestovskiĭ, Homogeneous spaces with an intrinsic metric, Dokl. Akad. Nauk SSSR 301 (1988), no. 2, 268–271 (Russian); English transl., Soviet Math. Dokl. 38 (1989), no. 1, 60–63. MR 967817
  • 4. Berestovskii, V. N., Homogeneous spaces with intrinsic metric, Soviet Math. Dokl. 27 (1989) 60-63.
  • 5. Berestovskii, V. N., and Plaut, C., Homogeneous spaces of curvature bounded below, preprint.
  • 6. Jeff Cheeger and David G. Ebin, Comparison theorems in Riemannian geometry, North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1975. North-Holland Mathematical Library, Vol. 9. MR 0458335
  • 7. Yu. Burago, M. Gromov, and G. Perel′man, A. D. Aleksandrov spaces with curvatures bounded below, Uspekhi Mat. Nauk 47 (1992), no. 2(284), 3–51, 222 (Russian, with Russian summary); English transl., Russian Math. Surveys 47 (1992), no. 2, 1–58. MR 1185284, https://doi.org/10.1070/RM1992v047n02ABEH000877
  • 8. Cohn-Vossen, S., Existenz kürzester Wege, Dokl. Math. SSSR 8 (1935) 339-342.
  • 9. V. M. Gluškov, The structure of locally compact groups and Hilbert’s fifth problem., Amer. Math. Soc. Transl. (2) 15 (1960), 55–93. MR 0114872
  • 10. Mikhael Gromov, Structures métriques pour les variétés riemanniennes, Textes Mathématiques [Mathematical Texts], vol. 1, CEDIC, Paris, 1981 (French). Edited by J. Lafontaine and P. Pansu. MR 682063
  • 11. Karsten Grove, Metric differential geometry, Differential geometry (Lyngby, 1985) Lecture Notes in Math., vol. 1263, Springer, Berlin, 1987, pp. 171–227. MR 905882, https://doi.org/10.1007/BFb0078613
  • 12. Sigurdur Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics, vol. 80, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 514561
  • 13. Hurewicz, W. and Wallman, H., Dimension Theory, Princeton U. Press, Princeton, 1941. MR 3:312b
  • 14. Lashof, R., Lie algebras of locally compact groups, Pac. J. Math. 7 (1957) 1145-1162. MR 19:1064a
  • 15. Montgomery, D. and Zippin, L., Topological transformation groups, Interscience, New York, 1955. MR 17:383b
  • 16. Barrett O’Neill, The fundamental equations of a submersion, Michigan Math. J. 13 (1966), 459–469. MR 0200865
  • 17. Conrad Plaut, Almost Riemannian spaces, J. Differential Geom. 34 (1991), no. 2, 515–537. MR 1131442
  • 18. Conrad Plaut, Metric curvature, convergence, and topological finiteness, Duke Math. J. 66 (1992), no. 1, 43–57. MR 1159431, https://doi.org/10.1215/S0012-7094-92-06602-6
  • 19. Conrad Plaut, Metric pinching of locally symmetric spaces, Duke Math. J. 73 (1994), no. 1, 155–162. MR 1257280, https://doi.org/10.1215/S0012-7094-94-07305-5
  • 20. Plaut, C., Correction to ``Metric pinching of locally symmetric spaces'', Duke Math. J., 75 (1994) 527-528. CMP 94:17
  • 21. Plaut, C., Spaces of Wald curvature bounded below, J. Geom. Analysis, to appear.
  • 22. Neil W. Rickert, Arcs in locally compact groups, Math. Ann. 172 (1967), 222–228. MR 0213467, https://doi.org/10.1007/BF01351189
  • 23. Neil W. Rickert, Some properties of locally compact groups, J. Austral. Math. Soc. 7 (1967), 433–454. MR 0219656
  • 24. Willi Rinow, Die innere Geometrie der metrischen Räume, Die Grundlehren der mathematischen Wissenschaften, Bd. 105, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1961. MR 0123969
  • 25. van Kampen, E. R., The structure of a compact connected group, Amer. J. Math. 57 (1935) 301-308.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 53C70, 22D05, 22E65

Retrieve articles in all journals with MSC (1991): 53C70, 22D05, 22E65


Additional Information

Conrad Plaut
Affiliation: Department of Mathematics, University of Tennessee, Knoxville, Tennessee 37996-1300
Email: plaut@novell.math.utk.edu

DOI: https://doi.org/10.1090/S0002-9947-96-01592-9
Keywords: Locally compact groups, Alexandrov curvature, invariant metric
Received by editor(s): February 16, 1994
Additional Notes: The author gratefully acknowledges the support of NSF grant DMS-9401302
Article copyright: © Copyright 1996 American Mathematical Society