Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Geometrizing Infinite Dimensional Locally Compact Groups


Author: Conrad Plaut
Journal: Trans. Amer. Math. Soc. 348 (1996), 941-962
MSC (1991): Primary 53C70, 22D05; Secondary 22E65
MathSciNet review: 1348156
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study groups having invariant metrics of curvature bounded below in the sense of Alexandrov. Such groups are a generalization of Lie groups with invariant Riemannian metrics, but form a much larger class. We prove that every locally compact, arcwise connected, first countable group has such a metric. These groups may not be (even infinite dimensional) manifolds. We show a number of relationships between the algebraic and geometric structures of groups equipped with such metrics. Many results do not require local compactness.


References [Enhancements On Off] (What's this?)

  • 1. Lennart Sandgren, A correction to “On convex cones”, Math. Scand. 3 (1955), 170. MR 0071043
    K. P. Grotemeyer, Die eindeutige Bestimmung einer Klasse von offenen, vollständigen Flächen durch die Metrik, Math. Z. 52 (1955), 17–22 (German). MR 0071042
    A. D. Alexandrow, Die innere Geometrie der konvexen Flächen, Akademie-Verlag, Berlin, 1955 (German). MR 0071041
    Robert Sauer, Darboux-Kranz verknickbarer Vierecksgitter, Arch. Math. 6 (1955), 180–184 (German). MR 0071040
    Wolfgang Böhm, Die Fadenkonstruktionen der Flächen zweiter Ordnung, Math. Nachr. 13 (1955), 151–156 (German). MR 0071039
    Domenico Boccioni, Spazi affini immersi in uno spazio proiettivo sopra un corpo qualsiasi e questioni di ampliamento, Rend. Sem. Mat. Univ. Padova 24 (1955), 123–141 (Italian). MR 0071038
    Tatiana Tvrdá, On the sum of convex configurations, Mat.-Fyz. Časopis. Slovensk. Akad. Vied 4 (1954), 218–226 (Slovak). MR 0071044
  • 2. A. D. Aleksandrov, V. N. Berestovskiĭ, and I. G. Nikolaev, Generalized Riemannian spaces, Uspekhi Mat. Nauk 41 (1986), no. 3(249), 3–44, 240 (Russian). MR 854238
  • 3. V. N. Berestovskiĭ, Homogeneous spaces with an intrinsic metric, Dokl. Akad. Nauk SSSR 301 (1988), no. 2, 268–271 (Russian); English transl., Soviet Math. Dokl. 38 (1989), no. 1, 60–63. MR 967817
  • 4. Berestovskii, V. N., Homogeneous spaces with intrinsic metric, Soviet Math. Dokl. 27 (1989) 60-63.
  • 5. Berestovskii, V. N., and Plaut, C., Homogeneous spaces of curvature bounded below, preprint.
  • 6. Jeff Cheeger and David G. Ebin, Comparison theorems in Riemannian geometry, North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1975. North-Holland Mathematical Library, Vol. 9. MR 0458335
  • 7. Yu. Burago, M. Gromov, and G. Perel′man, A. D. Aleksandrov spaces with curvatures bounded below, Uspekhi Mat. Nauk 47 (1992), no. 2(284), 3–51, 222 (Russian, with Russian summary); English transl., Russian Math. Surveys 47 (1992), no. 2, 1–58. MR 1185284, 10.1070/RM1992v047n02ABEH000877
  • 8. Cohn-Vossen, S., Existenz kürzester Wege, Dokl. Math. SSSR 8 (1935) 339-342.
  • 9. V. M. Gluškov, The structure of locally compact groups and Hilbert’s fifth problem., Amer. Math. Soc. Transl. (2) 15 (1960), 55–93. MR 0114872
  • 10. Mikhael Gromov, Structures métriques pour les variétés riemanniennes, Textes Mathématiques [Mathematical Texts], vol. 1, CEDIC, Paris, 1981 (French). Edited by J. Lafontaine and P. Pansu. MR 682063
  • 11. Karsten Grove, Metric differential geometry, Differential geometry (Lyngby, 1985) Lecture Notes in Math., vol. 1263, Springer, Berlin, 1987, pp. 171–227. MR 905882, 10.1007/BFb0078613
  • 12. Sigurdur Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics, vol. 80, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 514561
  • 13. Witold Hurewicz and Henry Wallman, Dimension Theory, Princeton Mathematical Series, v. 4, Princeton University Press, Princeton, N. J., 1941. MR 0006493
  • 14. Richard K. Lashof, Lie algebras of locally compact groups, Pacific J. Math. 7 (1957), 1145–1162. MR 0092104
  • 15. Deane Montgomery and Leo Zippin, Topological transformation groups, Interscience Publishers, New York-London, 1955. MR 0073104
  • 16. Barrett O’Neill, The fundamental equations of a submersion, Michigan Math. J. 13 (1966), 459–469. MR 0200865
  • 17. Conrad Plaut, Almost Riemannian spaces, J. Differential Geom. 34 (1991), no. 2, 515–537. MR 1131442
  • 18. Conrad Plaut, Metric curvature, convergence, and topological finiteness, Duke Math. J. 66 (1992), no. 1, 43–57. MR 1159431, 10.1215/S0012-7094-92-06602-6
  • 19. Conrad Plaut, Metric pinching of locally symmetric spaces, Duke Math. J. 73 (1994), no. 1, 155–162. MR 1257280, 10.1215/S0012-7094-94-07305-5
  • 20. Plaut, C., Correction to ``Metric pinching of locally symmetric spaces'', Duke Math. J., 75 (1994) 527-528. CMP 94:17
  • 21. Plaut, C., Spaces of Wald curvature bounded below, J. Geom. Analysis, to appear.
  • 22. Neil W. Rickert, Arcs in locally compact groups, Math. Ann. 172 (1967), 222–228. MR 0213467
  • 23. Neil W. Rickert, Some properties of locally compact groups, J. Austral. Math. Soc. 7 (1967), 433–454. MR 0219656
  • 24. Willi Rinow, Die innere Geometrie der metrischen Räume, Die Grundlehren der mathematischen Wissenschaften, Bd. 105, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1961. MR 0123969
  • 25. van Kampen, E. R., The structure of a compact connected group, Amer. J. Math. 57 (1935) 301-308.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 53C70, 22D05, 22E65

Retrieve articles in all journals with MSC (1991): 53C70, 22D05, 22E65


Additional Information

Conrad Plaut
Affiliation: Department of Mathematics, University of Tennessee, Knoxville, Tennessee 37996-1300
Email: plaut@novell.math.utk.edu

DOI: https://doi.org/10.1090/S0002-9947-96-01592-9
Keywords: Locally compact groups, Alexandrov curvature, invariant metric
Received by editor(s): February 16, 1994
Additional Notes: The author gratefully acknowledges the support of NSF grant DMS-9401302
Article copyright: © Copyright 1996 American Mathematical Society