Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Further Nice Equations for Nice Groups


Author: Shreeram S. Abhyankar
Journal: Trans. Amer. Math. Soc. 348 (1996), 1555-1577
MSC (1991): Primary 12F10, 14H30, 20D06, 20E22
DOI: https://doi.org/10.1090/S0002-9947-96-01584-X
MathSciNet review: 1348146
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Nice sextinomial equations are given for unramified coverings of the affine line in nonzero characteristic $p$ with P$\Omega ^{-}(2m,q)$ and $\Omega ^{-}(2m,q)$ as Galois groups where $m>3$ is any integer and $q>1$ is any power of $p>2$.


References [Enhancements On Off] (What's this?)

  • [A01] S. S. Abhyankar, Coverings of algebraic curves, American Journal of Mathematics 79 (1957), 825-856. MR 20:872
  • [A02] S. S. Abhyankar, Tame coverings and fundamental groups of algebraic varieties, Part I, American Journal of Mathematics 81 (1959), 46-94. MR 21:3428
  • [A03] S. S. Abhyankar, Galois theory on the line in nonzero characteristic, Dedicated to ``Feit-Serre-Email'', Bulletin of the American Mathematical Society 27 (1992), 68-133. MR 94a:12004
  • [A04] S. S. Abhyankar, Nice equations for nice groups, Israel Journal of Mathematics 88 (1994), 1-24. MR 95:04
  • [A05] S. S. Abhyankar, More nice equations for nice groups, Proceedings of the American Mathematical Society (to appear).
  • [Asc] M. Aschbacher, Finite Group Theory, Cambridge University Press, 1986. MR 89b:20001
  • [BuS] F. Buekenhout and E. E. Shult, On the foundations of polar geometry, Geometriae Dedicata 3 (1974), 155-170. MR 50:3091
  • [CaK] P. J. Cameron and W. M. Kantor, 2-Transitive and antiflag transitive collineation groups of finite projective spaces, Journal of Algebra 60 (1979), 384-422. MR 81c:20032
  • [Dic] L. E. Dickson, Linear Groups, Teubner, 1901.
  • [Kan] W. M. Kantor, Rank 3 characterizations of classical geometries, Journal of Algebra 36 (1975), 309-313. MR 52:8229
  • [LiK] M. W. Liebeck and P. Kleidman, The Subgroup Structure of the Finite Classical Groups, Cambridge University Press, 1990. MR 91g:20001
  • [Tay] D. E. Taylor, The Geometry of the Classical Groups, Heldermann Verlag, Berlin, 1992. MR 94d:20028
  • [Tit] J. Tits, Buildings of Spherical Type and Finite BN-Pairs, Springer Lecture Notes In Mathematics Number 386, 1974. MR 57:9866

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 12F10, 14H30, 20D06, 20E22

Retrieve articles in all journals with MSC (1991): 12F10, 14H30, 20D06, 20E22


Additional Information

Shreeram S. Abhyankar
Affiliation: Department of Mathematics, Purdue University, West Lafayette, Indiana 47907
Email: ram@cs.purdue.edu

DOI: https://doi.org/10.1090/S0002-9947-96-01584-X
Received by editor(s): March 23, 1995
Additional Notes: This work was partly supported by NSF grant DMS 91–01424 and NSA grant MDA 904–92–H–3035.
Article copyright: © Copyright 1996 American Mathematical Society

American Mathematical Society