Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Analysis of the Wu metric. I: The case of convex Thullen domains


Authors: C. K. Cheung and Kang-Tae Kim
Journal: Trans. Amer. Math. Soc. 348 (1996), 1429-1457
MSC (1991): Primary 32H20
MathSciNet review: 1357392
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We present an explicit description of the Wu metric on the convex Thullen domains which turns out to be the first natural example of a purely Hermitian, non-Kählerian invariant metric. Also, we show that the Wu metric on these Thullen domains is in fact real analytic everywhere except along a lower dimensional subvariety, and is $C^{1}$ smooth overall. Finally, we show that the holomorphic curvature of the Wu metric on these Thullen domains is strictly negative where the Wu metric is real analytic, and is strictly negative everywhere in the sense of current.


References [Enhancements On Off] (What's this?)

  • 1. L. Ahlfors, An extension of Schwarz's lemma, Trans. Amer. Math. Soc. 43 (1938), 359--364.
  • 2. Kazuo Azukawa and Masaaki Suzuki, The Bergman metric on a Thullen domain, Nagoya Math. J. 89 (1983), 1–11. MR 692340
  • 3. E. Bedford and S. I. Pinchuk, Domains in 𝐶² with noncompact groups of holomorphic automorphisms, Mat. Sb. (N.S.) 135(177) (1988), no. 2, 147–157, 271 (Russian); English transl., Math. USSR-Sb. 63 (1989), no. 1, 141–151. MR 937803
  • 4. Stefan Bergman, The kernel function and conformal mapping, Second, revised edition, American Mathematical Society, Providence, R.I., 1970. Mathematical Surveys, No. V. MR 0507701
  • 5. John S. Bland, The Einstein-Kähler metric on {\vert{𝑧}\vert²+\vert𝑤\vert^{2𝑝}<1}, Michigan Math. J. 33 (1986), no. 2, 209–220. MR 837579, 10.1307/mmj/1029003350
  • 6. Brian E. Blank, Da Shan Fan, David Klein, Steven G. Krantz, Daowei Ma, and Myung-Yull Pang, The Kobayashi metric of a complex ellipsoid in 𝐶², Experiment. Math. 1 (1992), no. 1, 47–55. MR 1181086
  • 7. D. Burns Jr., S. Shnider, and R. O. Wells Jr., Deformations of strictly pseudoconvex domains, Invent. Math. 46 (1978), no. 3, 237–253. MR 0481119
  • 8. Shiu Yuen Cheng and Shing Tung Yau, On the existence of a complete Kähler metric on noncompact complex manifolds and the regularity of Fefferman’s equation, Comm. Pure Appl. Math. 33 (1980), no. 4, 507–544. MR 575736, 10.1002/cpa.3160330404
  • 9. Marek Jarnicki and Peter Pflug, Invariant distances and metrics in complex analysis, de Gruyter Expositions in Mathematics, vol. 9, Walter de Gruyter & Co., Berlin, 1993. MR 1242120
  • 10. Fritz John, Extremum problems with inequalities as subsidiary conditions, Studies and Essays Presented to R. Courant on his 60th Birthday, January 8, 1948, Interscience Publishers, Inc., New York, N. Y., 1948, pp. 187–204. MR 0030135
  • 11. Kang-Tae Kim, Domains in 𝐶ⁿ with a piecewise Levi flat boundary which possess a noncompact automorphism group, Math. Ann. 292 (1992), no. 4, 575–586. MR 1157315, 10.1007/BF01444637
  • 12. K. Kim and J. Yu, Boundary behavior of the Bergman curvature in the strictly pseudoconvex polyhedral domains, Pacific J. Math., (to appear).
  • 13. Paul F. Klembeck, Kähler metrics of negative curvature, the Bergmann metric near the boundary, and the Kobayashi metric on smooth bounded strictly pseudoconvex sets, Indiana Univ. Math. J. 27 (1978), no. 2, 275–282. MR 0463506
  • 14. Shoshichi Kobayashi, Hyperbolic manifolds and holomorphic mappings, Pure and Applied Mathematics, vol. 2, Marcel Dekker, Inc., New York, 1970. MR 0277770
  • 15. Shoshichi Kobayashi and Katsumi Nomizu, Foundations of differential geometry. Vol. II, Interscience Tracts in Pure and Applied Mathematics, No. 15 Vol. II, Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney, 1969. MR 0238225
  • 16. László Lempert, La métrique de Kobayashi et la représentation des domaines sur la boule, Bull. Soc. Math. France 109 (1981), no. 4, 427–474 (French, with English summary). MR 660145
  • 17. Yung-chen Lu, Holomorphic mappings of complex manifolds, J. Differential Geometry 2 (1968), 299–312. MR 0250243
  • 18. B. Wong, Characterization of the unit ball in 𝐶ⁿ by its automorphism group, Invent. Math. 41 (1977), no. 3, 253–257. MR 0492401
  • 19. H. Wu, A remark on holomorphic sectional curvature, Indiana Univ. Math. J. 22 (1972/73), 1103–1108. MR 0315642
  • 20. H. Wu, Old and new invariant metrics on complex manifolds, Several complex variables (Stockholm, 1987/1988) Math. Notes, vol. 38, Princeton Univ. Press, Princeton, NJ, 1993, pp. 640–682. MR 1207887
  • 21. ------, Unpublished Notes.
  • 22. Shing Tung Yau, A general Schwarz lemma for Kähler manifolds, Amer. J. Math. 100 (1978), no. 1, 197–203. MR 0486659

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 32H20

Retrieve articles in all journals with MSC (1991): 32H20


Additional Information

C. K. Cheung
Affiliation: Department of Mathematics, Boston College, Chestnut Hill, Massachusetts 02167
Email: cheung/mt@hermes.bc.edu

Kang-Tae Kim
Affiliation: Department of Mathematics, Pohang University of Science and Technology, Pohang, 790-784 South Korea
Email: kimkt@posmath.postech.ac.kr

DOI: http://dx.doi.org/10.1090/S0002-9947-96-01642-X
Keywords: Kobayashi metric, invariant Hermitian metric, hyperbolic complex manifold, smoothness, holomorphic curvature
Received by editor(s): February 6, 1995
Additional Notes: Research of the second named author is supported in part by grants from Pohang University of Science and Technology and GARC of Seoul National University.
Article copyright: © Copyright 1996 American Mathematical Society