Noncomplete linear systems on abelian varieties

Author:
Christina Birkenhake

Journal:
Trans. Amer. Math. Soc. **348** (1996), 1885-1908

MSC (1991):
Primary 14C20, 14K05

DOI:
https://doi.org/10.1090/S0002-9947-96-01570-X

MathSciNet review:
1340170

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a smooth projective variety. Every embedding is the linear projection of an embedding defined by a complete linear system. In this paper the geometry of such not necessarily complete embeddings is investigated in the special case of abelian varieites. To be more precise, the properties of complete embeddings are extended to arbitrary embeddings, and criteria for these properties to be satisfied are elaborated. These results are applied to abelian varieties. The main result is: *Let be a general polarized abelian variety of type and , such that is even, and . The general subvector space of codimension satisfies the property .*

**[ACGH]**E. Arbarello, M. Cornalba, P.A. Griffiths, J. Harris: Geometry of Algebraic Curves I, Grundlehren 267, Springer Verlag (1985) MR**86h:14019****[B]**Ch. Birkenhake: Linear Systems on Projective spaces, Manuscripta Math. 88 (1995) 177--184.**[CAV]**H. Lange, Ch. Birkenhake: Complex Abelian Varieties, Grundlehren 302, Springer Verlag (1992) MR**94j:14001****[G1]**M Green: Koszul cohomology and the geometry of projective varieties, J. Diff. Geom. 19 (1984) 125 -- 171 MR**85e:14022****[G2]**M. Green: Koszul cohomology and Geometry, in: Lectures on Riemann surfaces, Proceedings of a conference in Trieste, World Scientific 1989, 177--200 MR**91k:14012****[G--L]**M. Green, R. Lazarsfeld: Some results on the syzygies of finite sets and algebraic curves, preprint**[Ha]**R. Hartshorne: Algebraic Geometry, Springer Verlag (1977) MR**57:3116****[Hi]**F. Hirzebruch: Topological Methods in Algebraic Geometry, Grundlehren 131, Springer Verlag (3rd ed., 1966) MR**34:2573****[K]**G. Kempf: The projective coordinate ring of abelian varieties, in: Algebraic Analysis, Geometry and Number Theory (ed. by J. I. Igusa), The Johns Hopkins Press (1989), 225 -- 236**[L1]**R. Lazarsfeld: A Sampling of Vector Bundle Techniques in the Study of Linear Series, in: Lectures on Riemann Surfaces, Proceedings of a conference in Trieste, World Scientific 1989, 550 -- 559 MR**92f:14006****[L2]**R. Lazarsfeld: Syzygies of Abelian Varieties, private notes (1993)**[Ma]**H. Matsumura: Commutative Algebra, Benjamin/Cummings Publishing Company (1980) MR**82i:13003****[M]**D. Mumford: Varieties defined by quadratic equations, in: Questions on Algebraic varieties, C.I.M.E. (1970) 29 -- 100 MR**44:209**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (1991):
14C20,
14K05

Retrieve articles in all journals with MSC (1991): 14C20, 14K05

Additional Information

**Christina Birkenhake**

Affiliation:
Mathematisches Institut, Universität Erlangen Bismarckstrasse 1$\frac12$, D-91054 Erlangen, Germany

Email:
Birkenhake@mi.uni-erlangen.de

DOI:
https://doi.org/10.1090/S0002-9947-96-01570-X

Received by editor(s):
June 9, 1995

Additional Notes:
Supported by EC Contract No. CHRXCT 940557

Article copyright:
© Copyright 1996
American Mathematical Society