Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



On homomorphisms from a fixed representation to a general representation of a quiver

Author: William Crawley-Boevey
Journal: Trans. Amer. Math. Soc. 348 (1996), 1909-1919
MSC (1991): Primary 16G20; Secondary 14M15
MathSciNet review: 1348149
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study the dimension of the space of homomorphisms from a given representation $X$ of a quiver to a general representation of dimension vector $\beta$. We prove a theorem about this number, and derive two corollaries concerning its asymptotic behaviour as $\beta$ increases. These results are related to work of A. Schofield on homological epimorphisms from the path algebra to a simple artinian ring.

References [Enhancements On Off] (What's this?)

  • [B] N. Bourbaki, Algèbre Commutative, Hermann, Paris, 1961--83.
  • [DG] Michel Demazure and Pierre Gabriel, Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs, Masson & Cie, Éditeur, Paris; North-Holland Publishing Co., Amsterdam, 1970 (French). Avec un appendice Corps de classes local par Michiel Hazewinkel. MR 0302656
  • [E] D. Eisenbud, Commutative algebra with a view toward algebraic geometry, Graduate Texts in Math. 150, Springer-Verlag, New York, 1995. CMP 95:10
  • [P] Claudio Procesi, Rings with polynomial identities, Marcel Dekker, Inc., New York, 1973. Pure and Applied Mathematics, 17. MR 0366968
  • [S1] A. H. Schofield, Representation of rings over skew fields, London Mathematical Society Lecture Note Series, vol. 92, Cambridge University Press, Cambridge, 1985. MR 800853
  • [S2] Aidan Schofield, General representations of quivers, Proc. London Math. Soc. (3) 65 (1992), no. 1, 46–64. MR 1162487, 10.1112/plms/s3-65.1.46

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 16G20, 14M15

Retrieve articles in all journals with MSC (1991): 16G20, 14M15

Additional Information

William Crawley-Boevey
Affiliation: Department of Pure Mathematics, University of Leeds, Leeds LS2 9JT, England

Received by editor(s): July 21, 1995
Article copyright: © Copyright 1996 American Mathematical Society