Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

HYPERFINITE TRANSVERSAL THEORY. II


Author: Bosko Zivaljevic
Journal: Trans. Amer. Math. Soc. 348 (1996), 1921-1938
MSC (1991): Primary 03H04, 03E15; Secondary 04A15, 05C99, 28E05, 54H05
DOI: https://doi.org/10.1090/S0002-9947-96-01596-6
MathSciNet review: 1348159
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We continue the investigation of validity of Hall's theorem in the case of the Loeb space $L({\mathcal{H}})$ of an internal, uniformly distributed, hyperfinite measure space ${\mathcal{H}}=(\Omega ,{\mathcal{A}},\mu )$ initiated in1992 by the author. Some new classes of graphs are introduced for which the measure theoretic version of Hall's theorem still holds.


References [Enhancements On Off] (What's this?)

  • [Ar] Z. Artstein, Distributions of Random Sets and Random Selections, Israel Journal of Math. 46 (1983), 313-324. MR 85m:60017
  • [Be] E. Bertossi, Standard Capacities With Nonstandard Pavings, Notas De LA Sociedad De Mat. De Chile V (1986), 1-6. MR 88c:26023
  • [BoVa] B. Bollobas and N. Th. Varopoulos, Representation of Systems of Measurable Sets, Math.Proc.Camb.Phil.Soc. 78 (1974), 323-325. MR 52:686
  • [BrSi] D. W. Bressler and M. Sion, The Current Theory of Analytic Sets, Can.J.Math. 16 (1964), 207-230. MR 29:1153
  • [Ha] P. Hall, On Representatives of Subsets, J. London Math. Soc. 10 (1935), 26-30.
  • [He] C. W. Henson, Analytic Sets, Baire Sets, and the Standard Part Map, Canadian J. Math. 31 (1979), 663-672. MR 80i:28019
  • [HeRo] C. W. Henson and D. Ross, Analytic mappings on hyperfinite sets, Proc.Amer.Math.Soc. 2 (1993), 587-596. MR 93g:03055
  • [HuLo] A. E. Hurd and P. A. Loeb, An Introduction to Nonstandard Real Analysis, Academic Press, New York, 1985. MR 87d:03184
  • [KKLM] H. J. Keisler, K. Kunen, A. Miller and S. Leth, Descriptive Set Theory over Hyperfinite sets, J. Symbolic Logic 54 (4) (1989), 1167-1180. MR 91c:03040
  • [Lo] P. A. Loeb, Conversion from Nonstandard to Standard Measure Space and Applications in Probability Theory, Trans.Amer.Math.Soc. 211 (1975), 113-122. MR 52:10980
  • [Ma] Mauldin, D., One-to-one Selections-marriage Theorems, American Journal of Mathematics 104 (1982), 823-828. MR 84b:28013
  • [Me] P. A. Meyer, Probabilités et Potentiel, Hermann, Paris, 1966. MR 34:5118
  • [NW] C. Nash-Williams, Unexplored and Semi-Explored Territories in Graph Theory, New Directions in Graph Theory (Frank Harray, ed.), Academic Press, 1973. MR 52:7944
  • [Ro] D. Ross, Lifting Theorems in Nonstandard Measure Theory, Proc.Amer.Math.Soc 109 (1990), 809-822. MR 91b:03110
  • [SchZi] K. Schilling and B. \v{Z}ivaljevi\'{c}, Louveau's Theorem for the Descriptive Set Theory of Internal Sets, (submitted).
  • [StBa] K. D. Stroyan, J. M. Bayod, Foundations of Infinitesimal Stochastic Analysis, North-Holland, Amsterdam, 1986. MR 87m:60001
  • [Zi1] B. \v{Z}ivaljevi\'{c}, Hyperfinite Transversal Theory, Trans. Amer. Math. Soc 330 (1992), 371-399. MR 92f:03073
  • [Zi2] ------, Rado's Theorem for the Loeb Space of an internal $\ast $-finitely additive measure space, Proc. Amer. Math. Soc. 112 (1991), 203-207. MR 91h:03092
  • [Zi3] ------, The structure of graphs all of whose $Y$ sections are internal sets, J. of Symbolic Logic 56 (1991), 50-66. MR 92j:03059
  • [Zi4] ------, Graphs with ${\Pi _{1}^{0}(\kappa )}$ $Y$ sections, Arch. Math. Logic 32 No.4 (1993), 259-273. MR 94e:03065
  • [Zi5] ------, $\Pi _{1}^{1}$ functions are almost internal, Trans. Amer. Math. Soc. 347 (1995), 2621--2632.
  • [Zi6] ------, $\Pi _{1}^{1}$ sets of infinite Loeb measure, Proc. Amer. Math. Soc. (to appear).

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 03H04, 03E15, 04A15, 05C99, 28E05, 54H05

Retrieve articles in all journals with MSC (1991): 03H04, 03E15, 04A15, 05C99, 28E05, 54H05


Additional Information

Bosko Zivaljevic
Affiliation: Department of Computer Science, The University of Illinois at Urbana - Champaign, Urbana, Illinois 61801
Address at time of publication: International Paper Company, Process Management Computer, 3101 International Drive East, Mobile, Alabama 36606
Email: zivaljev@cs.uiuc.edu

DOI: https://doi.org/10.1090/S0002-9947-96-01596-6
Keywords: Nonstandard measure theory, transversal theory, Hall's theorem, descriptive set theory of internal sets
Received by editor(s): August 7, 1994
Received by editor(s) in revised form: June 5, 1995
Article copyright: © Copyright 1996 American Mathematical Society

American Mathematical Society