Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Linear additive functionals of
superdiffusions and related nonlinear P.D.E.


Authors: E. B. Dynkin and S. E. Kuznetsov
Journal: Trans. Amer. Math. Soc. 348 (1996), 1959-1987
MSC (1991): Primary 60J60, 35J65; Secondary 60J80, 31C15, 60J25, 60J55, 31C45, 35J60
DOI: https://doi.org/10.1090/S0002-9947-96-01602-9
MathSciNet review: 1348859
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $L$ be a second order elliptic differential operator in a bounded smooth domain $D$ in $\mathbb{R}^{d}$ and let $1<\alpha \le 2$. We get necessary and sufficient conditions on measures $\eta , \nu $ under which there exists a positive solution of the boundary value problem

\begin{equation*}\begin{gathered} -Lv+v^{\alpha }=\eta \quad \text{ in } D,\\ v=\nu \quad \text{ on } \partial D. \end{gathered}\tag{*} \end{equation*}

The conditions are stated both analytically (in terms of capacities related to the Green's and Poisson kernels) and probabilistically (in terms of branching measure-valued processes called $(L,\alpha )$-superdiffusions).

We also investigate a closely related subject --- linear additive functionals of superdiffusions. For a superdiffusion in an arbitrary domain $E$ in $\mathbb{R}^{d}$, we establish a 1-1 correspondence between a class of such functionals and a class of $L$-excessive functions $h$ (which we describe in terms of their Martin integral representation). The Laplace transform of $A$ satisfies an integral equation which can be considered as a substitute for (*).


References [Enhancements On Off] (What's this?)

  • 1. D. R. Adams and L. I. Hedberg, Function Spaces and Potential Theory, forthcoming book.
  • 2. P. Baras and M. Pierre, Singularités éliminable pour des équations semi-linéares, Ann. Inst. Fourier, Grenoble 34 (1984), 185-206. MR 86j:35063
  • 3. G. Choquet, Theory of capacities, Ann. Inst. Fourier 5 (1953-54), 131-295. MR 18:295g
  • 4. C. Dellacherie and P.-A. Meyer, Probabilités et potentiel, Hermann, Paris, 1975, 1980, 1983, 1987. MR 58:7757; MR 82b:60001; MR 86b:60003, MR 89j:60001
  • 5. E. B. Dynkin, Functionals of trajectories of Markov stochastic processes, Doklady Akademii Nauk SSSR 104:5 (1955), 691-694. MR 17:501b
  • 6. ------, Markov Processes, Springer-Verlag, Berlin, Göttingen and Heidelberg, 1965. MR 33:1887
  • 7. ------, Exit space of a Markov process, [English translation: Russian Math. Surveys, 24, 4, pp. 89-157.], Uspekhi Mat. Nauk 24,4 (148), 89-152. MR 41:9359
  • 8. ------, Superprocesses and partial differential equations, Ann. Probab. 21 (1993), 1185-1262. MR 94j:60156
  • 9. ------, An Introduction to Branching Measure-Valued Processes, American Mathematical Society, Providence, Rhode Island, 1994. MR 96f:60145
  • 10. ------, Minimal excessive measures and functions, [Reprinted in: E. B. Dynkin, Markov Processes and Related Problems of Analysis, London Math. Soc. Lecture Note Series 54, Cambridge University Press, Cambridge, 1982.], Trans. Amer. Math. Soc. 258 (1980), 217-244. MR 81a:60086
  • 11. ------, Superprocesses and their linear additive functionals, Transact. Amer. Math. Soc. 314 (1989), 255-282. MR 89k:60124
  • 12. ------, A probabilistic approach to one class of nonlinear differential equations, Probab. Th. Rel. Fields 89 (1991), 89-115. MR 92d:35090
  • 13. ------, Branching particle systems and superprocesses, Ann. Probab. 19 (1991), 1157- 1194. MR 92j:60101
  • 14. ------, Path processes and historical processes, Probab. Th. Rel. Fields 90 (1991), 89-115. MR 92i:60145
  • 15. ------, Additive functionals of superdiffusion processes, Random walks, Brownian Motion and Interacting Particle Systems, Progress in Probability (Rick Durrett, Harry Kesten, eds.), vol. 28, Birkhäuser, Boston, Basel and Berlin, 1991. MR 93d:60122
  • 16. ------, Superdiffusions and parabolic nonlinear differential equations, Ann. Probab. 20 (1992), 942-962. MR 93d:60124
  • 17. E. B. Dynkin and S. E. Kuznetsov, Superdiffusions and removable singularities for quasilinear partial differential equations, Comm. Pure & Appl. Math (1996) (to appear).
  • 18. E. B. Dynkin, S. E. Kuznetsov, Solutions of $Lu = u^{\alpha }$ dominated by $L$-harmonic functions, Journale d'Analyse (1996) (to appear).
  • 19. A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs, N. J., 1964. MR 31:6062
  • 20. M. Fukushima, Dirichlet Forms and Markov Processes, Kodansha, North-Holland, 1980. MR 81f:60105
  • 21. D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, Springer-Verlag, Berlin and Heidelberg, 1983. MR 86c:35035
  • 22. A. Gmira and L. Véron, Boundary singularities of solutions of some nonlinear elliptic equations, Duke Math. J. 64 (1991), 271-324. MR 93a:35053
  • 23. J.-F. Le Gall, The Brownian snake and solutions of $\Delta u=u^{2}$ in a domain, preprint, 1994.
  • 24. C. Miranda, Partial Differential Equations of Elliptic Type, 2nd ed., Springer-Verlag, Berlin and Heidelberg, New York, 1970. MR 44:1924
  • 25. M. Sharpe, General theory of Markov processes, Academic Press, San Diego, 1988. MR 89m:60169

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 60J60, 35J65, 60J80, 31C15, 60J25, 60J55, 31C45, 35J60

Retrieve articles in all journals with MSC (1991): 60J60, 35J65, 60J80, 31C15, 60J25, 60J55, 31C45, 35J60


Additional Information

E. B. Dynkin
Affiliation: Department of Mathematics, Cornell University, Ithaca, New York 14853-7901
Email: ebd1@cornell.edu

S. E. Kuznetsov
Affiliation: Central Economics and Mathematical Institute, Russian Academy of Sciences, 117418, Moscow, Russia
Address at time of publication: Department of Mathematics, Cornell University, Ithaca, New York 14853-7901
Email: sk47@cornell.edu

DOI: https://doi.org/10.1090/S0002-9947-96-01602-9
Received by editor(s): March 29, 1995
Additional Notes: Partially supported by National Science Foundation Grant DMS-9301315
Article copyright: © Copyright 1996 American Mathematical Society

American Mathematical Society