Fractal Dimensions and Random Transformations

Author:
Yuri Kifer

Journal:
Trans. Amer. Math. Soc. **348** (1996), 2003-2038

MSC (1991):
Primary 28A78; Secondary 58F15, 28A80, 60F10

DOI:
https://doi.org/10.1090/S0002-9947-96-01608-X

MathSciNet review:
1348865

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: I start with random base expansions of numbers from the interval and, more generally, vectors from , which leads to random expanding transformations on the -dimensional torus . As in the classical deterministic case of Besicovitch and Eggleston I find the Hausdorff dimension of random sets of numbers with given averages of occurrences of digits in these expansions, as well as of general closed sets ``invariant'' with respect to these random transformations, generalizing the corresponding deterministic result of Furstenberg. In place of the usual entropy which emerges (as explained in Billingsley's book) in the Besicovitch-Eggleston and Furstenberg cases, the relativised entropy of random expanding transformations comes into play in my setup. I also extend to the case of random transformations the Bowen-Ruelle formula for the Hausdorff dimension of repellers.

**[ABD]**J. Aaronson, R. Burton, H. Dehling, D. Gilat, T. Hill, B. Weiss,*Strong laws for - and -statistics*, Trans. Amer. Math. Soc. (to appear).**[Bed]**T. Bedford,*On Weierstrass-like functions and random recurrent sets*, Math. Proc. Camb. Phil. Soc.**106**(1989), 325-342. MR**91c:26010****[Be]**A. S. Besicovitch,*On the sum of digits of real numbers represented in the dyadic system*, Math. Annalen**110**(1934), 321-330.**[Bi1]**P. Billingsley,*Hausdorff dimension in probability theory. I, II*, Illinois J. Math**4**(1960), 187-209;**5**(1961), 291-298. MR**24a:**1750, MR**22:**11094**[Bi2]**P. Billingsley,*Ergodic Theory and Information*, John Wiley, New York, 1965. MR**33:254****[Bi3]**P. Billingsley,*Hausdorff dimension: self-similarity and independent processes; cross-*, in: Statistics and Probability: A Raghu Raj Bahadur Festschrift (J. K. Ghosh, S. K. Mitra, K. R. Parthasarathy and B. L. S. Prakasa Rao, eds.), Wiley Eastern Ltd, 1993, pp. 97-134.

similarity and Markov processes**[Bo]**T. Bogenschutz,*Entropy, pressure, and a variational principle for random dynamical systems*, Random & Comp.Dyn.**1**(1992), 99-116. MR**93:28023****[BG1]**T. Bogenschutz and V. M. Gundlach,*Symbolic dynamics for expanding random dynamical systems*, Random & Comp.Dyn.**1**(1992), 219-227. MR**93j:58042****[BG2]**T. Bogenschutz and V. M. Gundlach,*Ruelle's transfer operator for random subshifts of finite type*, Ergod. Th. & Dyn. Sys.**15**(1995), 413--447. CMP**95:14****[BK]**M. Brin and A. Katok,*On local entropy*, in: Geometric Dynamics, Lect. Notes in Math. 1007, Springer-Verlag, New York, 1983, pp. 30-38. MR**85c:58063****[Ca]**H. Cajar,*Billingsley Dimension in Probability Spaces*, Lect. Notes in Math. 892, Springer-Verlag, Berlin, 1981. MR**84a:10055****[DZ]**A. Dembo and O. Zeitouni,*Large Deviations Techniques and Applications*, Jones and Bartlett, Boston, 1993. MR**95a:60034****[Eg]**H. G. Eggleston,*The fractional dimension of a set defined by decimal properties*, Quart. J. Math. Oxford Ser.**20**(1949), 31-36. MR**11:88****[Fa]**K. Falconer,*Fractal Geometry (Mathematical Foundations and Applications)*, J. Wiley & Sons, Chichester, 1990. MR**92j:28008****[Fu]**H. Furstenberg,*Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation*, Math. Syst. Th.**1**(1967), 1-49. MR**35:4369****[Ki1]**Y. Kifer,*Large deviations in dynamical systems and stochastic processes*, Trans. Amer. Math. Soc.**321**(1990), 505-524. MR**91e:60091****[Ki2]**Y. Kifer,*Equilibrium states for random expanding transformations*, Random & Comp.Dyn.**1**(1992), 1-31. MR**93j:58075****[KK]**K. Khanin and Y. Kifer,*Thermodynamic formalism for random transformations and statistical mechanics*, Sinai's Moscow Seminar on Dynamical Systems (L. A. Buninovich, B. M. Gurevich, Ya. B. Pesin, eds.), AMS Translations-Series 2, 1995.**[KP1]**R. Kenyon and Y. Peres,*Intersecting random translates of invariant Cantor sets*, Invent. Math.**104**(1991), 601-629. MR**92g:28018****[KP2]**R. Kenyon and Y. Peres,*Measures of full dimension on affine-invariant sets*, Ergod. Th. & Dynam. Sys.**15**(1995).**[LP]**L. Lovász and M. D. Plummer,*Matching Theory*, North-Holland, Amsterdam, 1986. MR**88b:90087****[LW]**F. Ledrappier and P. Walters,*A relativized variational principle for continuous transformations*, J. London Math. Soc.**16**(1977), 568-576. MR**57:16540****[Mc]**C. McMullen,*The Hausdorff dimension of general Sierpinski carpets*, Nagoya Math. J.**96**(1984), 1-9. MR**86h:11061****[MO]**A. W. Marshall and I. Olkin,*Inequalities: Theory of Majorization and Its Applications*, Academic Press, New York, 1979. MR**81b:00002****[Ol]**L. Olsen,*Random Geometrically Graph Directed Self-Similar Multifractals*, Pitman Research Notes in Mathematics, vol. 307, Longman Sci. Tech., Harlow, 1994. MR**95j:28006****[Pe]**Y. Pesin,*On rigorous mathematical definitions of correlation dimension and generalized spectrum for dimensions*, J. Stat. Phys.**71**(1993), 529-547. MR**94d:28008****[Pey]**J. Peyrière,*Calculs de dimensions de Hausdorff*, Duke Math. J.**44**(1977), 591-601. MR**56:3257****[Ph]**W. Philipp,*Limit theorems for lacunary series and uniform distribution mod 1*, Acta Arithm.**26**(1975), 241-251. MR**52:325****[PW]**Y. Pesin and H. Weiss,*On the dimension of deterministic and random Cantor-like sets, symbolic dynamics, and the Eckmann-Ruelle conjecture*, Preprint, 1994.**[Ru]**D. Ruelle,*Bowen's formula for the Hausdorff dimension of self-similar sets*, in: Scaling and Self-similarity in Physics (Progress in Physics 7), Birkhäuser, Boston, 1983, pp. 351-357. MR**85d:58051****[Sm]**M. Smorodinsky,*Singular measures and Hausdorff measures*, Israel J. Math.**7**(1969), 203-206. MR**40:3589****[St]**V. Strassen,*The existence of probability measures with given marginals*, Ann. of Math. Stat.**36**(1965), 423-439. MR**31:1693****[Wa]**P. Walters,*Invariant measures and equilibrium states for some mappings which expand distances*, Trans. Amer. Math. Soc.**236**(1978), 121-153. MR**57:6371****[Yo]**L.-S. Young,*Dimension, entropy, and Lyapunov exponents*, Ergod. Th. & Dyn. Sys.**2**(1982), 109-129. MR**84h:58087**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (1991):
28A78,
58F15,
28A80,
60F10

Retrieve articles in all journals with MSC (1991): 28A78, 58F15, 28A80, 60F10

Additional Information

**Yuri Kifer**

Affiliation:
Institute of Mathematics, Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel

Email:
kifer@math.huji.ac.il

DOI:
https://doi.org/10.1090/S0002-9947-96-01608-X

Keywords:
Hausdorff dimension,
random transformations,
repellers

Received by editor(s):
November 30, 1994

Received by editor(s) in revised form:
June 16, 1995

Additional Notes:
Partially supported by the US-Israel Binational Science Foundation.

Article copyright:
© Copyright 1996
American Mathematical Society