Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Real connective K-theory and
the quaternion group


Authors: Dilip Bayen and Robert R. Bruner
Journal: Trans. Amer. Math. Soc. 348 (1996), 2201-2216
MSC (1991): Primary 19L41, 19L47, 19L64, 55N15, 55R35, 55Q91, 55M05
DOI: https://doi.org/10.1090/S0002-9947-96-01516-4
MathSciNet review: 1329527
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ko$ be the real connective K-theory spectrum. We compute $ko_*BG$ and $ko^*BG$ for groups $G$ whose Sylow 2-subgroup is quaternion of order 8. Using this we compute the coefficients $t(ko)^G_*$ of the $G$ fixed points of the Tate spectrum $t(ko)$ for $G = Sl_2(3)$ and $G = Q_8$. The results provide a counterexample to the optimistic conjecture of Greenlees and May [9, Conj. 13.4], by showing, in particular, that $t(ko)^G$ is not a wedge of Eilenberg-Mac Lane spectra, as occurs for groups of prime order.


References [Enhancements On Off] (What's this?)

  • 1. J. F. Adams, Stable Homotopy and Generalised Homology, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, 1974. MR 53:6534
  • 2. D. W. Anderson, E. H. Brown, Jr., and F. P. Peterson, Pin cobordism and related topics, Comment. Math. Helv. 44 (1969), 462--468. MR 41:6226
  • 3. Dilip Bayen, The connective real K-homology of finite groups, Thesis, Wayne State University, 1994.
  • 4. D.M. Davis and Mark Mahowald, The spectrum $(P \smsh bo)_{-\infty }$, Math. Proc. Camb. Phil. Soc. 96 (1984), 85--93. MR 85j:55018
  • 5. Boris Botvinnik and Peter Gilkey, The eta invariant and metrics of positive scalar curvature, Math. Annalen (to appear).
  • 6. Boris Botvinnik and Peter Gilkey, Metrics of positive scalar curvature on spherical space forms, Can. J. Math (to appear).
  • 7. Boris Botvinnik, Peter Gilkey and Stephan Stolz, The Gromov-Lawson-Rosenberg conjecture for manifolds with a spherical space form fundamental group, Preprint of IHES, November, 1995.
  • 8. J. P. C. Greenlees and Hal Sadofsky, The Tate spectrum of $v_n$-periodic complex oriented theories, Math. Zeit. (to appear).
  • 9. J. P. C. Greenlees and J. P. May, Generalized Tate cohomology, Memoirs AMS 543 (1995). CMP 95:07
  • 10. J. Martino and S. B. Priddy, Classification of $BG$ for groups with dihedral or quaternion Sylow 2-subgroup, J. Pure. Appl. Alg. 73 (1991), 13--21. MR 92f:55022
  • 11. J. P. May and R. J. Milgram, The Bockstein and the Adams spectral sequences, Proc. AMS 83(1) (1981), 128--130. MR 82i:55019
  • 12. M. Mahowald and R. J. Milgram, Operations which detect $Sq^4$ in connective $K$-theory and their applications, Quart. J. Math. Oxford (2), 27 (1976), 415--432. MR 55:6429
  • 13. S. B. Priddy and Z. Fiedorowicz, Homology of Classical Groups Over Finite Fields and Their Associated Infinite Loop Spaces, Lecture Notes in Math. no 674, Springer-Verlag, 1978. MR 80g:55018
  • 14. Stephan Stolz, Splitting MSpin-module spectra, Topology 33 (1994). MR 94m:55005
  • 15. S. Stolz and J. Rosenberg, A stable version of the Gromov--Lawson conjecture, The \v{C}ech Centennial, Contemp. Math., vol. 181, Amer. Math. Soc., Providence, RI, 1995. CMP 95:09
  • 16. R. E. Stong, Determination of $H^*(BO(k,...,\infty );Z/2)$ and $H^*(BU(k,...,\infty )$, Trans. AMS 107 (1963), 526--544. MR 27:1944

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 19L41, 19L47, 19L64, 55N15, 55R35, 55Q91, 55M05

Retrieve articles in all journals with MSC (1991): 19L41, 19L47, 19L64, 55N15, 55R35, 55Q91, 55M05


Additional Information

Dilip Bayen
Affiliation: Department of Mathematics, Wayne State University, Detroit, Michigan 48202
Email: dbayen@math.wayne.edu

Robert R. Bruner
Affiliation: Department of Mathematics, Wayne State University, Detroit, Michigan 48202
Email: rrb@math.wayne.edu

DOI: https://doi.org/10.1090/S0002-9947-96-01516-4
Keywords: Quaternion group, classifying space, connective K-theory, Tate cohomology
Received by editor(s): August 10, 1994
Article copyright: © Copyright 1996 American Mathematical Society

American Mathematical Society