Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Cesàro Summability of
Two-dimensional Walsh-Fourier Series

Author: Ferenc Weisz
Journal: Trans. Amer. Math. Soc. 348 (1996), 2169-2181
MSC (1991): Primary 42C10, 43A75; Secondary 60G42, 42B30
MathSciNet review: 1340180
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We introduce p-quasi-local operators and the two-dimensional
dyadic Hardy spaces $H_{p}$ defined by the dyadic squares. It is proved that, if a sublinear operator $T$ is p-quasi-local and bounded from $L_{\infty }$ to $L_{\infty }$, then it is also bounded from $H_{p}$ to $L_{p}$ $(0<p \leq 1)$. As an application it is shown that the maximal operator of the Cesàro means of a martingale is bounded from $H_{p}$ to $L_{p}$ $(1/2<p \leq \infty )$ and is of weak type (1,1) provided that the supremum in the maximal operator is taken over a positive cone. So we obtain the dyadic analogue of a summability result with respect to two-dimensional trigonometric Fourier series due to Marcinkievicz and Zygmund; more exactly, the Cesàro means of a function $f \in L_{1}$ converge a.e. to the function in question, provided again that the limit is taken over a positive cone. Finally, it is verified that if we take the supremum in a cone, but for two-powers, only, then the maximal operator of the Cesàro means is bounded from $H_{p}$ to $L_{p}$ for every $0<p \leq \infty $.

References [Enhancements On Off] (What's this?)

  • 1. Bennett, C., Sharpley, R., Interpolation of operators, Pure and Applied Mathematics, vol. 129, 1988. MR 89e:46001
  • 2. Bergh, J., Löfström, J., Interpolation spaces, an introduction, Berlin, Heidelberg, New York: Springer, 1976. MR 58:2349
  • 3. Coifman, R.R., Weiss, G., Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645. MR 56:6264
  • 4. Fine, N.J., Cesàro summability of Walsh-Fourier series, Proc. Nat. Acad. Sci. USA 41 (1955), 558-591. MR 17:31f
  • 5. Fine, N.J., On the Walsh functions, Trans. Amer. Math. Soc. 65 (1949), 372-414. MR 11:352b
  • 6. Fujii, N., A maximal inequality for $H^{1}$-functions on a generalized Walsh-Paley group, Proc. Amer. Math. Soc. 77 (1979), 111-116. MR 81b:42070
  • 7. Garsia, A.M., Martingale inequalities, Lecture notes series, New York: Benjamin Inc., 1973. MR 56:6844
  • 8. Marcinkievicz, J., Zygmund, A., On the summability of double Fourier series, Fund. Math. 32 (1939), 122-132.
  • 9. Móricz, F., Schipp, F., Wade, W.R., Cesàro summability of double Walsh-Fourier series, Trans. Amer. Math. Soc. 329 (1992), 131-140. MR 92j:42028
  • 10. Neveu, J., Discrete-parameter martingales, North-Holland, 1971. MR 53:6729
  • 11. Schipp, F., Über gewissen Maximaloperatoren, Ann. Univ. Sci. Budapest Sect. Math. 18 (1975), 189-195. MR 55:3670
  • 12. Schipp, F., Simon, P., On some $(H,L_{1})$-type maximal inequalities with respect to the Walsh-Paley system, Coll. Math. Soc. J. Bolyai, vol. 35, Functions, Series, Operators, Budapest (Hungary), 1980, North Holland (Amsterdam, 1981), pp. 1039-1045. MR 86a:42032
  • 13. Schipp, F., Wade, W.R., Simon, P., Pál, J.:, Walsh series: An introduction to dyadic harmonic analysis, Adam Hilger, Bristol-New York, 1990. MR 44:7280
  • 14. Stein, E.M., Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, N.J., 1970. MR 44:7280
  • 15. Wade, W.R., A growth estimate for Cesàro partial sums of multiple Walsh-Fourier series, Coll. Math. Soc. J. Bolyai 49, Alfred Haar Memorial Conference, Budapest (Hungary), 1985, North Holland (Amsterdam, 1986), pp. 975-991. MR 89f:42026
  • 16. Weisz, F., Cesàro summability of double trigonometric-Fourier series, F. Math. Anal. Appl., preprint.
  • 17. Weisz, F., Interpolation between martingale Hardy and BMO spaces, the real method, Bull. Sc. Math. 116 (1992), 145-158. MR 93h:46028
  • 18. Weisz, F., Martingale Hardy spaces and their applications in Fourier-analysis, Lecture Notes in Math., vol. 1568, Berlin, Heidelberg, New York: Springer, 1994. CMP 95:09
  • 19. Weisz, F., Martingale Hardy spaces for $0<p \leq 1$, Probab. Th. Rel. Fields 84 (1990), 361-376. MR 91d:60107
  • 20. Zygmund, A., Trigonometric series, Cambridge Press, London, 1959. MR 21:6498
  • 21. Gát, Gy., Pointwise convergence of the Cesàro means of double Walsh series, Ann. Univ. Sci. Budapest Eötvös, Sect. Comp., preprint.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 42C10, 43A75, 60G42, 42B30

Retrieve articles in all journals with MSC (1991): 42C10, 43A75, 60G42, 42B30

Additional Information

Ferenc Weisz
Affiliation: Department of Numerical Analysis, Eötvös L. University, H-1088 Budapest, Múzeum krt. 6-8 , Hungary

Keywords: Martingale Hardy spaces, p-atom, atomic decomposition, p-quasi-local operator, interpolation, Walsh functions, Cesàro summability
Received by editor(s): June 28, 1994
Additional Notes: This research was partly supported by the Hungarian Scientific Research Funds (OTKA) No. F4189.
Article copyright: © Copyright 1996 American Mathematical Society

American Mathematical Society