Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Prime spectra of quantum semisimple groups

Authors: K. A. Brown and K. R. Goodearl
Journal: Trans. Amer. Math. Soc. 348 (1996), 2465-2502
MSC (1991): Primary 16D30, 16D60, 16P40, 17B37
MathSciNet review: 1348148
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the prime ideal spaces of the quantized function algebras $R_{q}[G]$, for $G$ a semisimple Lie group and $q$ an indeterminate. Our method is to examine the structure of algebras satisfying a set of seven hypotheses, and then to demonstrate, using work of Joseph, Hodges and Levasseur, that the algebras $R_{q}[G]$ satisfy this list of assumptions. Rings satisfying the assumptions are shown to satisfy normal separation, and therefore Jategaonkar's strong second layer condition. For such rings much representation-theoretic information is carried by the graph of links of the prime spectrum, and so we proceed to a detailed study of the prime links of algebras satisfying the list of assumptions. Homogeneity is a key feature -- it is proved that the clique of any prime ideal coincides with its orbit under a finite rank free abelian group of automorphisms. Bounds on the ranks of these groups are obtained in the case of $R_{q}[G]$. In the final section the results are specialized to the case $G= SL_{n}(\mathbb {C})$, where detailed calculations can be used to illustrate the general results. As a preliminary set of examples we show also that the multiparameter quantum coordinate rings of affine $n$-space satisfy our axiom scheme when the group generated by the parameters is torsionfree.

References [Enhancements On Off] (What's this?)

  • 1. W. Borho, P. Gabriel, and R. Rentschler, Primideale in Einhüllenden auflösbarer Lie-Algebren, Lecture Notes in Math. 357, Springer-Verlag, Berlin, 1973. MR 51:12965
  • 2. K. A. Brown, On the representation theory of solvable Lie algebras II: the abelian group attached to a prime ideal, J. London Math. Soc. (2) 43 (1991), 49-60. MR 92g:17010
  • 3. K. A. Brown and F. du Cloux, On the representation theory of solvable Lie algebras, Proc. London Math. Soc. (3) 57 (1988), 284-300. MR 89k:17026
  • 4. K. A. Brown and R. B. Warfield, Jr., The influence of ideal structure on representation theory, J. Algebra 116 (1988), 294-315. MR 89k:16026
  • 5. W. Chin and I. M. Musson, Hopf algebra duality, injective modules, and quantum groups, Communic. in Algebra 22 (1994), 4661-4692. MR 95d:16049
  • 6. C. De Concini and C. Procesi, Quantum groups, in D-Modules, Representation Theory, and Quantum Groups (Venezia, June 1992) (L. Boutet de Monvel, G. Zampieri, and A. D'Agnolo, eds.), Lecture Notes in Math. 1565, Springer-Verlag, Berlin, 1993, pp. 31-140. MR 95j:17012
  • 7. J. Dixmier, Enveloping Algebras, North-Holland, Amsterdam, 1977. MR 58:16803b
  • 8. V. G. Drinfel'd, Quantum groups, in Proc. Internat. Congr. Mathematicians, Berkeley 1986, I, pp. 798-820. MR 89f:17017
  • 9. A. W. Goldie and G. O. Michler, Ore extensions and polycyclic group rings, J. London Math. Soc. (2) 9 (1974), 337-345. MR 50:9968
  • 10. K. R. Goodearl, Classical localizability in solvable enveloping algebras and Poincaré-Birkhoff-Witt extensions, J. Algebra 132 (1990), 243-262. MR 91j:16021
  • 11. K. R. Goodearl and T. H. Lenagan, Catenarity in quantum algebras, J. Pure Appl. Algebra (to appear).
  • 12. K. R. Goodearl and E. S. Letzter, Prime factor algebras of the coordinate ring of quantum matrices, Proc. Amer. Math. Soc. 121 (1994), 1017-1025. MR 94j:16066
  • 13. K. R. Goodearl and R. B. Warfield, Jr., An Introduction to Noncommutative Noetherian Rings, London Math. Soc. Student Text Series 16, Cambridge Univ. Press, Cambridge, 1989. MR 91c:16001
  • 14. V. Guillemin and S. Sternberg, Geometric Asymptotics, Math. Surveys 14, Amer. Math. Soc., Providence, 1977. MR 58:24404
  • 15. T. J. Hodges and T. Levasseur, Primitive ideals of ${\mathbf {C}}_{q}[SL(3)]$, Comm. Math. Phys. 156 (1993), 581-605. MR 94k:17023
  • 16. ------, Primitive ideals of ${\mathbf {C}}_{q}[SL(n)]$, J. Algebra 168 (1994), 455-468. MR 95i:16038
  • 17. T. J. Hodges, T. Levasseur, and M. Toro, Algebraic structure of multi-parameter quantum groups, Advances in Math. (to appear).
  • 18. J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge Univ. Press, Cambridge, 1990. MR 92h:20002
  • 19. N. Jacobson, Structure of Rings, Colloq. Publ. 37, Amer. Math. Soc., Providence, 1956. MR 18:373d
  • 20. A. V. Jategaonkar, Localization in Noetherian Rings, London Math. Soc. Lecture Note Series 98, Cambridge Univ. Press, Cambridge, 1986. MR 88c:16005
  • 21. A. Joseph, Idéaux premiers et primitifs de l'algèbre des fonctions sur un groupe quantique, C. R. Acad. Sci. Paris, Sér. I 316 (1993), 1139-1142. MR 94c:17029
  • 22. ------, On the prime and primitive spectra of the algebra of functions on a quantum group, J. Algebra 169 (1994), 441-511. CMP 95:2
  • 23. ------, Quantum Groups and Their Primitive Ideals, Ergeb. der Math. und ihrer Grenz-
    geb. (3) 29, Springer-Verlag, Berlin, 1995. CMP 95:7
  • 24. ------, Sur les ideaux génériques de l'algèbre des fonctions sur un groupe quantique, C. R. Acad. Sci. Paris, Sér. I 321 (1995), 135-140.
  • 25. A. Joseph and G. Letzter, Separation of variables for quantized enveloping algebras, Amer. J. Math. 116 (1994), 127-177. MR 95e:17017
  • 26. A. A. Kirillov, Elements of the Theory of Representations, Springer-Verlag, Berlin, 1976. MR 54:447
  • 27. T. H. Lenagan and E. S. Letzter, The fundamental prime ideals of a noetherian prime PI ring, Proc. Edinburgh Math. Soc. 33 (1990), 113-121. MR 91b:16026
  • 28. T. Levasseur and J. T. Stafford, The quantum coordinate ring of the special linear group, J. Pure Appl. Algebra 86 (1993), 181-186. MR 94d:16038
  • 29. J.-H. Lu and A. Weinstein, Poisson Lie groups, dressing transformations and Bruhat decompositions, J. Diff. Geom. 31 (1990), 501-526. MR 91c:22012
  • 30. J. C. McConnell and J. J. Pettit, Crossed products and multiplicative analogues of Weyl algebras, J. London Math. Soc. (2) 38 (1988), 47--55. MR 90e:16011
  • 31. J. C. McConnell and J. C. Robson, Noncommutative Noetherian Rings, Wiley-Intersci-
    ence, New York, 1987. MR 89j:16023
  • 32. I. M. Musson, Links between cofinite prime ideals in quantum function algebras, Preprint (1995).
  • 33. M. Noumi, H. Yamada, and K. Mimachi, Finite dimensional representations of the quantum group $GL_{q}(n;{\mathbb C} )$ and the zonal spherical functions on $U_{q}(n-1)\backslash U_{q}(n)$, Japanese J. Math. 19 (1993), 31-80. MR 94i:17023
  • 34. B. Parshall and J.-P. Wang, Quantum linear groups, Memoirs Amer. Math. Soc. 89 (1991), no. 439. MR 91g:16028
  • 35. D. S. Passman, Infinite Crossed Products, Academic Press, New York, 1989. MR 90g:16002
  • 36. M. A. Semenov-Tian-Shansky, What is a classical $r$-matrix?, Func. Anal. Applic. 17 (1983), 259-272. MR 85i:58061
  • 37. S. P. Smith, Quantum groups: An introduction and survey for ring theorists, in Noncommutative Rings (S. Montgomery and L. Small, eds.), M.S.R.I. Publ. 24, Springer-Verlag, New York, 1992, pp. 131--178. MR 94g:17032
  • 38. Ya. S. Soibelman, The algebra of functions on a compact quantum group, and its representations, Leningrad Math. J. 2 (1991), 161-178. MR 91i:58053a,b (Russian original)
  • 39. R. B. Warfield, Jr., Review of ``Localization in Noetherian Rings'' by A. V. Jategaonkar, Bull. Amer. Math. Soc. 17 (1987), 396-400.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 16D30, 16D60, 16P40, 17B37

Retrieve articles in all journals with MSC (1991): 16D30, 16D60, 16P40, 17B37

Additional Information

K. A. Brown
Affiliation: Department of Mathematics, University of California, Santa Barbara, California 93106

K. R. Goodearl
Affiliation: Department of Mathematics, University of Glasgow, Glasgow G12 8QW, Scotland

Received by editor(s): November 4, 1994
Received by editor(s) in revised form: September 5, 1995
Additional Notes: The research of the second author was partially supported by a grant from the National Science Foundation (USA). Part of the work was carried out while he visited the University of Glasgow Mathematics Department during October 1993, supported by the Edinburgh and London Mathematical Societies. Work on a revised version of the paper was completed in summer 1995 during a visit by both authors to the Department of Mathematics of the University of Washington, whom both thank for its hospitality. The travel costs of the first author were in part covered by a grant from the Carnegie Trust for the Universities of Scotland.
Article copyright: © Copyright 1996 American Mathematical Society

American Mathematical Society