Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Total absolute curvature and tightness of noncompact manifolds


Author: Martin van Gemmeren
Journal: Trans. Amer. Math. Soc. 348 (1996), 2413-2426
MSC (1991): Primary 53C42; Secondary 57R45
DOI: https://doi.org/10.1090/S0002-9947-96-01632-7
MathSciNet review: 1355077
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In the first part we prove an extension of the Chern-Lashof inequality for noncompact immersed manifolds with finitely many ends. For this we give a lower bound of the total absolute curvature in terms of topological invariants of the manifold. In the second part we discuss tightness properties for such immersions. Finally, we give an upper bound for the substantial codimension.


References [Enhancements On Off] (What's this?)

  • 1. T.F. Banchoff, Tightly embedded 2-dimensional polyhedral manifold, Amer. J. Math. 87 (1965), 462-472. MR 31:2729
  • 2. ------, High codimensional \begin{math}0\end{math}-tight maps on spheres, Proc. Amer. Math. Soc. 161 (1971), 259-267. MR 43:5541
  • 3. D. Braess, Morse-Theorie für berandete Mannigfaltigkeiten, Math. Annalen 208 (1974), 133-148. MR 50:1285
  • 4. P. Breuer, Straffe Immersionen von kompakten differenzierbaren Mannigfaltigkeiten in euklidische Räume und die homologische Kennzeichnung dieser Immersionen (insbesondere Zwei-Stück-Eigenschaft), Diploma Thesis, Köln (1990).
  • 5. T.E. Cecil, Taut immersions of non-compact surfaces into a Euclidean 3-space, J. Differential Geometry 11 (1976), 451-459. MR 55:11275
  • 6. T.E. Cecil and P.J. Ryan, Tight and Taut Immersions of Manifolds, Pitman, London, 1985. MR 87b:53089
  • 7. S.-s. Chern and R.K. Lashof, On the total curvature of immersed manifolds. I, Amer. J. Math. 79 (1957), 396-398. MR 18:927a
  • 8. ------, On the total curvature of immersed manifolds. II, Mich. J. Math. 5 (1958), 5-12. MR 20:4301
  • 9. A. Dold, Lectures on Algebraic Topology, Springer, Berlin, 1980. MR 82c:55001
  • 10. S. Eilenberg and N. Steenrod, Foundations of algebraic topology, Princeton University Press, Princeton, 1952. MR 14:398b
  • 11. Ky Fan and N. Gottesman, On compactifications of Freudenthal and Wallman, Indag. Math. 14 (1952), 504-510. MR 14:669c
  • 12. D. Ferus, Totale Absolutkrümmung in Differentialgeometrie und -topologie, Lecture Notes in Mathematics 66, Springer, 1968. MR 40:3468
  • 13. H. Freudenthal, Kompaktifizierungen und Bikompaktifizierungen, Indag. Math. 13 (1951), 184-192. MR 12:728b
  • 14. C.H. Houghton, Ends of locally compact groups and their coset spaces, J. Australian Math. Soc. 17 (1974), 274-284. MR 50:10147
  • 15. N.H. Kuiper, On surfaces in euclidean three spaces, Bull. Soc. Math. Belg. 12 (1960), 5-22. MR 23:A609
  • 16. ------, On convex maps, Nieuv Archief voor Wisk. 10 (1962), 147-164. MR 26:3076
  • 17. ------, Minimal total absolute curvature for immersions, Invent. Math. 10 (1970), 209-238. MR 42:2499
  • 18. J. Milnor, Morse Theory, Annals of Mathematical Studies 51, Princeton, 1963. MR 29:634
  • 19. M. Morse and S.S. Cairns, Critical point theory in global analysis and differential topology, Academic Press, New York, 1969. MR 39:6358
  • 20. R. Sulanke und P. Wintgen, Differentialgeometrie und Faserbündel, Birkhäuser, Berlin-Basel-Stuttgart, 1972. MR 54:1274
  • 21. P. Wintgen, On total absolute curvature of nonclosed submanifolds, Annals of Global Analysis and Geometry 2 (1984), 55-87. MR 85m:53071

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 53C42, 57R45

Retrieve articles in all journals with MSC (1991): 53C42, 57R45


Additional Information

Martin van Gemmeren
Affiliation: Mathematisches Institut B, Universität Stuttgart, 70550 Stuttgart, Germany
Email: mvg@mathematik.uni-stuttgart.de

DOI: https://doi.org/10.1090/S0002-9947-96-01632-7
Keywords: Chern-Lashof inequality, Morse number, ends of manifolds, strong and weak tightness, proper immersion, limit direction
Received by editor(s): March 8, 1995
Additional Notes: The author acknowledges support by a fellowship of the Studienstiftung des deutschen Volkes.
Article copyright: © Copyright 1996 American Mathematical Society

American Mathematical Society