Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Bott's vanishing theorem
for regular Lie algebroids

Author: Jan Kubarski
Journal: Trans. Amer. Math. Soc. 348 (1996), 2151-2167
MSC (1991): Primary 22E15, 22E60, 53C05, 57T10, 57R20
MathSciNet review: 1357399
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Differential geometry has discovered many objects which determine Lie algebroids playing a role analogous to that of Lie algebras for Lie groups. For example:

--- differential groupoids,

--- principal bundles,

--- vector bundles,

--- actions of Lie groups on manifolds,

--- transversally complete foliations,

--- nonclosed Lie subgroups,

--- Poisson manifolds,

--- some complete closed pseudogroups.

We carry over the idea of Bott's Vanishing Theorem to regular Lie algebroids (using the Chern-Weil homomorphism of transitive Lie algebroids investigated by the author) and, next, apply it to new situations which are not described by the classical version, for example, to the theory of transversally complete foliations and nonclosed Lie subgroups in order to obtain some topological obstructions for the existence of involutive distributions and Lie subalgebras of some types (respectively).

References [Enhancements On Off] (What's this?)

  • [A] Grzegorz Andrzejczak, Some characteristic invariants of foliated bundles, Dissertationes Math. (Rozprawy Mat.) 222 (1984), 67. MR 735920
  • [A-M] Rui Almeida and Pierre Molino, Suites d’Atiyah et feuilletages transversalement complets, C. R. Acad. Sci. Paris Sér. I Math. 300 (1985), no. 1, 13–15 (French, with English summary). MR 778785
  • [C-D-W] A. Coste, P. Dazord, and A. Weinstein, Groupoïdes symplectiques, Publications du Département de Mathématiques. Nouvelle Série. A, Vol. 2, Publ. Dép. Math. Nouvelle Sér. A, vol. 87, Univ. Claude-Bernard, Lyon, 1987, pp. i–ii, 1–62 (French). MR 996653
  • [G] W. H. Greub, Multilinear algebra, Die Grundlehren der Mathematischen Wissenschaften, Band 136, Springer-Verlag New York, Inc., New York, 1967. MR 0224623
  • [G-H-V] Werner Greub, Stephen Halperin, and Ray Vanstone, Connections, curvature, and cohomology. Vol. II: Lie groups, principal bundles, and characteristic classes, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1973. Pure and Applied Mathematics, Vol. 47-II. MR 0336651
  • [K-T] Franz W. Kamber and Philippe Tondeur, Foliated bundles and characteristic classes, Lecture Notes in Mathematics, Vol. 493, Springer-Verlag, Berlin-New York, 1975. MR 0402773
  • [K1] Jan Kubarski, Lie algebroid of a principal fibre bundle, Publications du Département de Mathématiques. Nouvelle Série. A, Vol. 1, Publ. Dép. Math. Nouvelle Sér. A, vol. 89, Univ. Claude-Bernard, Lyon, 1989, pp. 1–66. MR 1129261
  • [K2] Jan Kubarski, A criterion for the minimal closedness of the Lie subalgebra corresponding to a connected nonclosed Lie subgroup, Rev. Mat. Univ. Complut. Madrid 4 (1991), no. 2-3, 159–176. MR 1145691
  • [K3] ------, The Chern-Weil homomorphism of regular Lie algebroids, Publ. Dépt. Math. Univ. Lyons N.S. A (to appear).
  • [K4] ------, Tangential Chern-Weil homomorphism, International Symposium/Workshop on Geometric Study of Foliations, November 15-26 1993, Tokyo (to appear)
  • [L1] Paulette Libermann, Pseudogroupes infinitésimaux attachés aux pseudogroupes de Lie, Bull. Soc. Math. France 87 (1959), 409–425 (French). MR 0123279
  • [L2] D. Kannan, Martingales in Banach spaces with Schauder bases, J. Mathematical and Physical Sci. 7 (1973), 93–100. MR 0356217
  • [MA] K. Mackenzie, Lie groupoids and Lie algebroids in differential geometry, London Mathematical Society Lecture Note Series, vol. 124, Cambridge University Press, Cambridge, 1987. MR 896907
  • [MO1] Pierre Molino, Étude des feuilletages transversalement complets et applications, Ann. Sci. École Norm. Sup. (4) 10 (1977), no. 3, 289–307 (French). MR 0458446
  • [MO2] Pierre Molino, Riemannian foliations, Progress in Mathematics, vol. 73, Birkhäuser Boston, Inc., Boston, MA, 1988. Translated from the French by Grant Cairns; With appendices by Cairns, Y. Carrière, É. Ghys, E. Salem and V. Sergiescu. MR 932463
  • [P] J. Pradines, Théorie de Lie pour les groupoïdes différentiables, Atti Conv. Intern. Geom. 7 Diff. Bologne, 1967, Bologna-Amsterdam.
  • [NVQ] Ngô van Quê, Du prolongement des espaces fibrés et des structures infinitésimales, Ann. Inst. Fourier (Grenoble) 17 (1967), no. fasc. 1, 157–223 (French). MR 0221416
  • [T1] N. Teleman, Cohomology of Lie algebras, Global analysis and its applications (Lectures, Internat. Sem. Course, Internat. Centre Theoret. Phys., Trieste, 1972) Internat. Atomic Energy Agency, Vienna, 1974, pp. 195–202. MR 0436162
  • [T2] Nicolae Teleman, A characterisitic ring of a Lie algebra extension. I, II, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 52 (1972), 498–506; ibid. (8) 52 (1972), 708–711 (English, with Italian summary). MR 0341500

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 22E15, 22E60, 53C05, 57T10, 57R20

Retrieve articles in all journals with MSC (1991): 22E15, 22E60, 53C05, 57T10, 57R20

Additional Information

Jan Kubarski
Affiliation: Institute of Mathematics, Technical University of Lodz, PL-90-924 Lodz, Al. Politechniki 11, Poland

Keywords: Bott's phenomenon, Chern-Weil homomorphism, Lie algebroid, transversally complete foliation, nonclosed Lie subgroup
Received by editor(s): May 27, 1994
Article copyright: © Copyright 1996 American Mathematical Society